Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Stereoselective synthesis of optical isomers of ethyl 4-chloro-3-hydroxybutyrate in a microfluidic chip reactor

Stereoselective synthesis of optical isomers of ethyl 4-chloro-3-hydroxybutyrate in a... Ethyl (R)-4-chloro-3-hydroxybutyrate ((R)-CHBE) is a versatile fine chemistry intermediate. It is used as a precursor in the synthesis of several pharmacologically valuable products, including L-carnitine. It is usually produced by means of stereoselective biotechnology methods in enzymatic reactions. An alternative preparation strategy towards ethyl (R)-4-chloro-3-hydroxybutyrate is based on the asymmetric hydrogenation of ethyl 4-chloro-acetoacetate (ECAA) to the optically pure product ((R)-CHBE) over ((S)-Ru-BINAP) catalytic complex. The reaction conditions were optimised first using (R)-Ru-BINAP yielding the (S)-CHBE isomer. All reactions were performed under continuous regime in a microfluidic chip reactor. Three different solvent phases were employed. The methanol/water phase, the ethanol/water phase, and the [N8,222][Tf2N]/methanol/water phase. The attained conversions were total in all cases already at 408 K. The parameter of enantioselectivity ee was 99.4% towards the (S)-CHBE for the system in which (R)-Ru-BINAP was accommodated in [N8,222][Tf2N]/methanol/water phase. In the case of methanol/water experiment the ee parameter reached 92.5%. For ethanol/water ee was 91.8%. The (R)-CHBE isomer over (S)-Ru-BINAP was obtained with ee = 99.3% in the [N8,222][Tf2N]/methanol/water phase at 408 K. For the reactions leading to (S)-CHBE apparent activation energies were evaluated. They were similar for MeOH/water and EtOH/water (110.5 and 110.7 kJ.mol−1). The apparent activation energies corresponding with the [N8,222][Tf2N]/MeOH/water system were much higher (of about 90 kJ.mol−1) reaching the level of 200 kJ.mol−1. The impact of the molecular structure of the main reactant was negligible as appeared from the comparison with hydrogenation of methylacetoacetate (MAA, ~ 200 kJ.mol−1). The effect of the presence of the [N8,222][Tf2N] ionic liquid on the sum of the activation energy dominated. The effectiveness of the enantioselective synthesis was additionally assessed by nuclear magnetic resonance employing the method of enantioselective complexation of the chiral compound with a chiral solvating agent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Flow Chemistry Springer Journals

Stereoselective synthesis of optical isomers of ethyl 4-chloro-3-hydroxybutyrate in a microfluidic chip reactor

Loading next page...
 
/lp/springer-journals/stereoselective-synthesis-of-optical-isomers-of-ethyl-4-chloro-3-9kuYddBtx1
Publisher
Springer Journals
Copyright
Copyright © 2019 by Akadémiai Kiadó
Subject
Chemistry; Chemistry/Food Science, general; Green Chemistry; Organic Chemistry; Inorganic Chemistry; Nanochemistry; Industrial Chemistry/Chemical Engineering
ISSN
2062-249X
eISSN
2063-0212
DOI
10.1007/s41981-019-00043-y
Publisher site
See Article on Publisher Site

Abstract

Ethyl (R)-4-chloro-3-hydroxybutyrate ((R)-CHBE) is a versatile fine chemistry intermediate. It is used as a precursor in the synthesis of several pharmacologically valuable products, including L-carnitine. It is usually produced by means of stereoselective biotechnology methods in enzymatic reactions. An alternative preparation strategy towards ethyl (R)-4-chloro-3-hydroxybutyrate is based on the asymmetric hydrogenation of ethyl 4-chloro-acetoacetate (ECAA) to the optically pure product ((R)-CHBE) over ((S)-Ru-BINAP) catalytic complex. The reaction conditions were optimised first using (R)-Ru-BINAP yielding the (S)-CHBE isomer. All reactions were performed under continuous regime in a microfluidic chip reactor. Three different solvent phases were employed. The methanol/water phase, the ethanol/water phase, and the [N8,222][Tf2N]/methanol/water phase. The attained conversions were total in all cases already at 408 K. The parameter of enantioselectivity ee was 99.4% towards the (S)-CHBE for the system in which (R)-Ru-BINAP was accommodated in [N8,222][Tf2N]/methanol/water phase. In the case of methanol/water experiment the ee parameter reached 92.5%. For ethanol/water ee was 91.8%. The (R)-CHBE isomer over (S)-Ru-BINAP was obtained with ee = 99.3% in the [N8,222][Tf2N]/methanol/water phase at 408 K. For the reactions leading to (S)-CHBE apparent activation energies were evaluated. They were similar for MeOH/water and EtOH/water (110.5 and 110.7 kJ.mol−1). The apparent activation energies corresponding with the [N8,222][Tf2N]/MeOH/water system were much higher (of about 90 kJ.mol−1) reaching the level of 200 kJ.mol−1. The impact of the molecular structure of the main reactant was negligible as appeared from the comparison with hydrogenation of methylacetoacetate (MAA, ~ 200 kJ.mol−1). The effect of the presence of the [N8,222][Tf2N] ionic liquid on the sum of the activation energy dominated. The effectiveness of the enantioselective synthesis was additionally assessed by nuclear magnetic resonance employing the method of enantioselective complexation of the chiral compound with a chiral solvating agent.

Journal

Journal of Flow ChemistrySpringer Journals

Published: Jul 6, 2019

References