Access the full text.
Sign up today, get DeepDyve free for 14 days.
Digital reconstruction of a single neuron occupies an important position in computational neuroscience. Although many novel methods have been proposed, recent advances in molecular labeling and imaging systems allow for the production of large and complicated neuronal datasets, which pose many challenges for neuron reconstruction, especially when discontinuous neuronal morphology appears in a strong noise environment. Here, we develop a new pipeline to address this challenge. Our pipeline is based on two methods, one is the region-to-region connection (RRC) method for detecting the initial part of a neurite, which can effectively gather local cues, i.e., avoid the whole image analysis, and thus boosts the efficacy of computation; the other is constrained principal curves method for completing the neurite reconstruction, which uses the past reconstruction information of a neurite for current reconstruction and thus can be suitable for tracing discontinuous neurites. We investigate the reconstruction performances of our pipeline and some of the best state-of-the-art algorithms on the experimental datasets, indicating the superiority of our method in reconstructing sparsely distributed neurons with discontinuous neuronal morphologies in noisy environment. We show the strong ability of our pipeline in dealing with the large-scale image dataset. We validate the effectiveness in dealing with various kinds of image stacks including those from the DIADEM challenge and BigNeuron project.
Neuroinformatics – Springer Journals
Published: Dec 7, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.