Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sorption and microbial degradation of glyphosate in soil suspensions

Sorption and microbial degradation of glyphosate in soil suspensions Sorption and microbial destruction of glyphosate, the active agent of the herbicide Ground Bio, in suspensions of sod-podzol and gray forest soils has been studied. According to the adsorptive values (3560 and 8200 mg/kg, respectively) and the Freundlich constants (Kf, 15.6 and 18.7, respectively), these soils had a relatively high sorption capacity as related to the herbicide. Sorbed glyphosate is represented by extractable and bound (non-extractable) fractions. After long-term incubation of sterile suspensions, the ratio of these fractions reached 2: 1 for sod-podzol soil and 1: 1 for gray forest soil. Inoculation of a native suspension of sod-podzol soil with cells of a selected strain-degrader Ochrobactum anthropi GPK 3 resulted in a 25.4% decrease in the total glyphosate content (dissolved and extractable), whereas in a noninoculated suspension, the loss did not exceed 5.5%. The potential for the use of a selected bacterial strain in the glyphosate destruction processes in soil systems is demonstrated for the first time. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Sorption and microbial degradation of glyphosate in soil suspensions

Loading next page...
 
/lp/springer-journals/sorption-and-microbial-degradation-of-glyphosate-in-soil-suspensions-82i6nwe2q6

References (18)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Medical Microbiology ; Microbiology ; Biochemistry, general
ISSN
0003-6838
eISSN
1608-3024
DOI
10.1134/S0003683809060040
Publisher site
See Article on Publisher Site

Abstract

Sorption and microbial destruction of glyphosate, the active agent of the herbicide Ground Bio, in suspensions of sod-podzol and gray forest soils has been studied. According to the adsorptive values (3560 and 8200 mg/kg, respectively) and the Freundlich constants (Kf, 15.6 and 18.7, respectively), these soils had a relatively high sorption capacity as related to the herbicide. Sorbed glyphosate is represented by extractable and bound (non-extractable) fractions. After long-term incubation of sterile suspensions, the ratio of these fractions reached 2: 1 for sod-podzol soil and 1: 1 for gray forest soil. Inoculation of a native suspension of sod-podzol soil with cells of a selected strain-degrader Ochrobactum anthropi GPK 3 resulted in a 25.4% decrease in the total glyphosate content (dissolved and extractable), whereas in a noninoculated suspension, the loss did not exceed 5.5%. The potential for the use of a selected bacterial strain in the glyphosate destruction processes in soil systems is demonstrated for the first time.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Nov 6, 2009

There are no references for this article.