Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Some generalizations of Knopp's identity*

Some generalizations of Knopp's identity* For integers a, b and n > 0, define $$ A_{\Gamma } {\left( {a,b,n} \right)} = {\sum\limits_{\begin{array}{*{20}c} {{r = 1}} \\ {{n\nmid b}} \\ \end{array} }^n {'\;\;{\left( {{\left( {\frac{{ar}} {n}} \right)}} \right)}} }\ln \Gamma {\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)} $$ and $$ B_{\Gamma } {\left( {a,b,n} \right)} = {\sum\limits_{\begin{array}{*{20}c} {{r = 1}} \\ {{n\nmid b}} \\ \end{array} }^n {'\;\;{\left( {{\left( {\frac{{ar}} {n}} \right)}} \right)}} }\frac{{{\Gamma }\ifmmode{'}\else$'$\fi{\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)}}} {{\Gamma {\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)}}}, $$ where $$ {\sum\limits{_r} ' } $$ denotes the summation over all r such that (r, n) = 1, and $$ \overline{r} $$ is defined by the equation $$ r\overline{r} \equiv 1\;\bmod n $$ . The two sums are analogous to the homogeneous Dedekind sum S(a,b, n). The functional equations for A Γ and B Γ are established. Furthermore, Knopp's identity on Dedekind sum is extended. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bulletin of the Brazilian Mathematical Society, New Series Springer Journals

Some generalizations of Knopp's identity*

Loading next page...
 
/lp/springer-journals/some-generalizations-of-knopp-s-identity-mfupw8Z0xI

References (9)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Mathematics, general; Mathematical and Computational Physics
ISSN
1678-7544
eISSN
1678-7714
DOI
10.1007/s00574-007-0042-5
Publisher site
See Article on Publisher Site

Abstract

For integers a, b and n > 0, define $$ A_{\Gamma } {\left( {a,b,n} \right)} = {\sum\limits_{\begin{array}{*{20}c} {{r = 1}} \\ {{n\nmid b}} \\ \end{array} }^n {'\;\;{\left( {{\left( {\frac{{ar}} {n}} \right)}} \right)}} }\ln \Gamma {\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)} $$ and $$ B_{\Gamma } {\left( {a,b,n} \right)} = {\sum\limits_{\begin{array}{*{20}c} {{r = 1}} \\ {{n\nmid b}} \\ \end{array} }^n {'\;\;{\left( {{\left( {\frac{{ar}} {n}} \right)}} \right)}} }\frac{{{\Gamma }\ifmmode{'}\else$'$\fi{\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)}}} {{\Gamma {\left( {{\left\{ {\frac{{b\ifmmode\expandafter\bar\else\expandafter\=\fi{r}}} {n}} \right\}}} \right)}}}, $$ where $$ {\sum\limits{_r} ' } $$ denotes the summation over all r such that (r, n) = 1, and $$ \overline{r} $$ is defined by the equation $$ r\overline{r} \equiv 1\;\bmod n $$ . The two sums are analogous to the homogeneous Dedekind sum S(a,b, n). The functional equations for A Γ and B Γ are established. Furthermore, Knopp's identity on Dedekind sum is extended.

Journal

Bulletin of the Brazilian Mathematical Society, New SeriesSpringer Journals

Published: Jan 1, 2007

There are no references for this article.