Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sleep Homeostasis, Metabolism, and Adenosine

Sleep Homeostasis, Metabolism, and Adenosine Sleep is an integral and constitutive part of life, invariably observed in animals with even a simple nervous system. Importantly, sleep is an active and highly regulated state. Sleep propensity or sleep need and its best established biological marker, electroencephalographic (EEG) slow-wave (or delta) activity, is tightly associated to prior wakefulness and sleep and is homeostatically regulated. Sleep need may be considered an essential aspect of life, just like feeding, drinking, and procreation. Sleep, therefore, likely developed in a primordial state of evolution and should either aid or, at least, not interfere with other essential biological aspects of life such as metabolisms and reproduction. Consistent with this view, brain circuitries regulating sleep need, metabolism, and reward appear to involve the basal ganglia and are tightly linked. They may sense changes in the organism’s major cellular energy store, adenosine-tri-phosphate (ATP), and its derivative adenosine, and act in concert with other important neuromodulatory systems including dopamine, glutamate, and hypocretin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Current Sleep Medicine Reports Springer Journals

Sleep Homeostasis, Metabolism, and Adenosine

Loading next page...
 
/lp/springer-journals/sleep-homeostasis-metabolism-and-adenosine-RJd0vDG0YW
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer International Publishing AG
Subject
Medicine & Public Health; Internal Medicine; General Practice / Family Medicine; Otorhinolaryngology; Neurology; Cardiology; Psychiatry
eISSN
2198-6401
DOI
10.1007/s40675-014-0007-3
Publisher site
See Article on Publisher Site

Abstract

Sleep is an integral and constitutive part of life, invariably observed in animals with even a simple nervous system. Importantly, sleep is an active and highly regulated state. Sleep propensity or sleep need and its best established biological marker, electroencephalographic (EEG) slow-wave (or delta) activity, is tightly associated to prior wakefulness and sleep and is homeostatically regulated. Sleep need may be considered an essential aspect of life, just like feeding, drinking, and procreation. Sleep, therefore, likely developed in a primordial state of evolution and should either aid or, at least, not interfere with other essential biological aspects of life such as metabolisms and reproduction. Consistent with this view, brain circuitries regulating sleep need, metabolism, and reward appear to involve the basal ganglia and are tightly linked. They may sense changes in the organism’s major cellular energy store, adenosine-tri-phosphate (ATP), and its derivative adenosine, and act in concert with other important neuromodulatory systems including dopamine, glutamate, and hypocretin.

Journal

Current Sleep Medicine ReportsSpringer Journals

Published: Jan 27, 2015

There are no references for this article.