Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Simple non-enzymatic electrochemical sensor for hydrogen peroxide based on nafion/platinum nanoparticles/reduced graphene oxide nanocomposite modified glassy carbon electrode

Simple non-enzymatic electrochemical sensor for hydrogen peroxide based on nafion/platinum... A facile and effective strategy to fabricate non-enzymatic H2O2 sensor was developed based on Nafion/Platinum nanoparticles/reduced graphene oxide (Nafion/Pt NPs/RGO) nanocomposite modified glassy carbon (GC) electrode. The morphology of Nafion/Pt NPs/RGO nanocomposite was characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) analyzer, Fourier transform infrared spectrum (FT-IR), and X-ray diffraction (XRD) spectrum respectively. The electrochemical properties of the prepared H2O2 sensor were evaluated by cyclic voltammetry and chronoamperometry. The prepared H2O2 sensor exhibited excellent electroreduction activity toward H2O2 with a wide linear range of 0.005–3 mM, a remarkable sensitivity of 132.8 μA mM−1 cm−2, and a low detection limit of 0.4 μM (S/N = 3). In addition, it showed good selectivity, reproducibility, and long-term stability. The excellent performance of the sensor might be attributed to the synergic effect of nanohybrids. These favorable results indicated that the prepared Nafion/Pt NPs/RGO nanocomposite is promising for fabricating non-enzymatic H2O2 sensor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Simple non-enzymatic electrochemical sensor for hydrogen peroxide based on nafion/platinum nanoparticles/reduced graphene oxide nanocomposite modified glassy carbon electrode

Ionics , Volume 23 (5) – Jan 3, 2017

Loading next page...
 
/lp/springer-journals/simple-non-enzymatic-electrochemical-sensor-for-hydrogen-peroxide-7sUekhaWlc

References (44)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-016-1944-2
Publisher site
See Article on Publisher Site

Abstract

A facile and effective strategy to fabricate non-enzymatic H2O2 sensor was developed based on Nafion/Platinum nanoparticles/reduced graphene oxide (Nafion/Pt NPs/RGO) nanocomposite modified glassy carbon (GC) electrode. The morphology of Nafion/Pt NPs/RGO nanocomposite was characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) analyzer, Fourier transform infrared spectrum (FT-IR), and X-ray diffraction (XRD) spectrum respectively. The electrochemical properties of the prepared H2O2 sensor were evaluated by cyclic voltammetry and chronoamperometry. The prepared H2O2 sensor exhibited excellent electroreduction activity toward H2O2 with a wide linear range of 0.005–3 mM, a remarkable sensitivity of 132.8 μA mM−1 cm−2, and a low detection limit of 0.4 μM (S/N = 3). In addition, it showed good selectivity, reproducibility, and long-term stability. The excellent performance of the sensor might be attributed to the synergic effect of nanohybrids. These favorable results indicated that the prepared Nafion/Pt NPs/RGO nanocomposite is promising for fabricating non-enzymatic H2O2 sensor.

Journal

IonicsSpringer Journals

Published: Jan 3, 2017

There are no references for this article.