Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Similarities in the penetration depth of concrete impacted by rigid projectiles

Similarities in the penetration depth of concrete impacted by rigid projectiles Similarity can reflect common laws in the mechanism of rigid-body penetration. In this paper, the similarities in rigid-body penetration depth are demonstrated by three non-dimensional but physically meaningful quantities, i.e., ρkinetic\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \rho_{\text{kinetic}} $$\end{document}, Iln∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ I_{ \ln }^{*} $$\end{document} and N1′\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ N^{\prime}_{1} $$\end{document}. These three quantities represent the non-dimensional areal density of projectile kinetic energy, the effect of nose geometry, and the friction at the interactive cross section between projectile and target respectively. It is shown that experimental data of rigid projectile penetration, from shallow to deep penetration, can be uniquely unified by these three similarity quantities and their relationships. Furthermore, for ogival nose projectiles, their penetration capacities are dominated by ρkinetic\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \rho_{\text{kinetic}} $$\end{document}, which is consisted by non-dimensional effective length Leff\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ L_{\text{eff}} $$\end{document} and non-dimensional quantity Dnp=ρpv02AY\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ D_{\text{n}}^{\text{p}} = \frac{{\rho_{\text{p}} v_{0}^{2} }}{AY} $$\end{document} which has the same form as Johnson’s damage number. On the sacrifice of minor theoretical accuracy, the non-dimensional penetration depth P/d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ P/d $$\end{document} can be understood as directly controlled by Dnp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ D_{\text{n}}^{\text{p}} $$\end{document}, enhanced by projectile effective length Leff\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ L_{\text{eff}} $$\end{document} under a multiplication relation, and optimized by projectile nose geometry in the formation of Iln∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ I_{ \ln }^{*} $$\end{document}.Graphic abstract[graphic not available: see fulltext] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Acta Mechanica Sinica" Springer Journals

Similarities in the penetration depth of concrete impacted by rigid projectiles

Loading next page...
 
/lp/springer-journals/similarities-in-the-penetration-depth-of-concrete-impacted-by-rigid-GPhOwKN70T

References (20)

Publisher
Springer Journals
Copyright
Copyright © The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature 2020
ISSN
0567-7718
eISSN
1614-3116
DOI
10.1007/s10409-020-00982-z
Publisher site
See Article on Publisher Site

Abstract

Similarity can reflect common laws in the mechanism of rigid-body penetration. In this paper, the similarities in rigid-body penetration depth are demonstrated by three non-dimensional but physically meaningful quantities, i.e., ρkinetic\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \rho_{\text{kinetic}} $$\end{document}, Iln∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ I_{ \ln }^{*} $$\end{document} and N1′\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ N^{\prime}_{1} $$\end{document}. These three quantities represent the non-dimensional areal density of projectile kinetic energy, the effect of nose geometry, and the friction at the interactive cross section between projectile and target respectively. It is shown that experimental data of rigid projectile penetration, from shallow to deep penetration, can be uniquely unified by these three similarity quantities and their relationships. Furthermore, for ogival nose projectiles, their penetration capacities are dominated by ρkinetic\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \rho_{\text{kinetic}} $$\end{document}, which is consisted by non-dimensional effective length Leff\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ L_{\text{eff}} $$\end{document} and non-dimensional quantity Dnp=ρpv02AY\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ D_{\text{n}}^{\text{p}} = \frac{{\rho_{\text{p}} v_{0}^{2} }}{AY} $$\end{document} which has the same form as Johnson’s damage number. On the sacrifice of minor theoretical accuracy, the non-dimensional penetration depth P/d\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ P/d $$\end{document} can be understood as directly controlled by Dnp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ D_{\text{n}}^{\text{p}} $$\end{document}, enhanced by projectile effective length Leff\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ L_{\text{eff}} $$\end{document} under a multiplication relation, and optimized by projectile nose geometry in the formation of Iln∗\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ I_{ \ln }^{*} $$\end{document}.Graphic abstract[graphic not available: see fulltext]

Journal

"Acta Mechanica Sinica"Springer Journals

Published: Oct 20, 2020

There are no references for this article.