Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics

Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of The Institution of Engineers (India): Series A Springer Journals

Shear Strengthening of RC Deep Beam Using Externally Bonded GFRP Fabrics

Loading next page...
 
/lp/springer-journals/shear-strengthening-of-rc-deep-beam-using-externally-bonded-gfrp-FBwAzGDrkn

References (3)

Publisher
Springer Journals
Copyright
Copyright © 2018 by The Institution of Engineers (India)
Subject
Engineering; Civil Engineering
ISSN
2250-2149
eISSN
2250-2157
DOI
10.1007/s40030-018-0272-0
Publisher site
See Article on Publisher Site

Abstract

This work presents the experimental investigation of RC deep beams wrapped with externally bonded Glass Fibre Reinforced Polymer (GFRP) fabrics in order to study the Load versus deflection behavior, cracking pattern, failure modes and ultimate shear strength. A total number of five deep beams have been casted, which is designed with conventional steel reinforcement as per IS: 456 (Indian standard plain and reinforced concrete—code for practice, Bureau of Indian Standards, New Delhi, 2000). The spans to depth ratio for all RC deep beams have been kept less than 2 as per the above specification. Out of five RC deep beams, one without retrofitting serves as a reference beam and the rest four have been wrapped with GFRP fabrics in multiple layers and tested with two point loading condition. The first cracking load, ultimate load and the shear contribution of GFRP to the deep beams have been observed. A critical discussion is made with respect to the enhancement of the strength, behaviour and performance of retrofitted deep beams in comparison to the deep beam without GFRP in order to explore the potential use of GFRP for strengthening the RC deep beams. Test results have demonstrated that the deep beams retrofitted with GFRP shows a slower development of the diagonal cracks and improves shear carrying capacity of the RC deep beam. A comparative study of the experimental results with the theoretical ones predicted by various researchers available in the literatures has also been presented. It is observed that the ultimate load of the beams retrofitted with GFRP fabrics increases with increase of number of GFRP layers up to a specific number of layers, i.e. 3 layers, beyond which it decreases.

Journal

Journal of The Institution of Engineers (India): Series ASpringer Journals

Published: Feb 12, 2018

There are no references for this article.