Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Setting critical nutrient values for ditches using the eutrophication model PCDitch

Setting critical nutrient values for ditches using the eutrophication model PCDitch Critical nutrient loads to prevent duckweed dominance loads in polder ditches were assessed using the eutrophication model PCDitch. In this article the ecological target was set at 50% duckweed coverage. This may be very high for ditches with a nature function, but is not unreasonable for ditches in agricultural areas, with upwelling nutrient rich groundwater, run-off and drainage. Since the change from a ditch with submersed vegetation to duckweed coverage is often a sudden shift, the choice of the amount of duckweed coverage does not influence the calculated loading very much. The main topic of this paper is to present a method to calculate critical loads of nutrients when ecological targets have been set. Sediment type, residence time and water depth influenced the critical loading rates. The calculated critical phosphorus load ranged from 1.8 to 10.2 g P m−2 year−1, while the calculated critical nitrogen load stretched from 12.1 to 43.8 g N m−2 year−1. The concentration ranges that were derived from the loading rate were 0.19–0.42 mg P l−1 and 1.3–3.3 mg N l−1. Since PCDitch does not distinguish between Lemna spp. and Azolla spp., no definite conclusions were drawn concerning the effects of nitrogen reduction. In a model situation a pristine ditch was loaded with phosphorus, which resulted into complete duckweed coverage during summer within a few years. When reducing the phosphorus load, it took 10 years before the original situation was reached again. Dredging would accelerate the process of recovery significantly, because the water depth would increase and the phosphorus release from the sediments in summer would decrease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Setting critical nutrient values for ditches using the eutrophication model PCDitch

Aquatic Ecology , Volume 41 (3) – Sep 15, 2006

Loading next page...
 
/lp/springer-journals/setting-critical-nutrient-values-for-ditches-using-the-eutrophication-9mcJwD3Pu1

References (18)

Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1386-2588
eISSN
1573-5125
DOI
10.1007/s10452-005-2835-1
Publisher site
See Article on Publisher Site

Abstract

Critical nutrient loads to prevent duckweed dominance loads in polder ditches were assessed using the eutrophication model PCDitch. In this article the ecological target was set at 50% duckweed coverage. This may be very high for ditches with a nature function, but is not unreasonable for ditches in agricultural areas, with upwelling nutrient rich groundwater, run-off and drainage. Since the change from a ditch with submersed vegetation to duckweed coverage is often a sudden shift, the choice of the amount of duckweed coverage does not influence the calculated loading very much. The main topic of this paper is to present a method to calculate critical loads of nutrients when ecological targets have been set. Sediment type, residence time and water depth influenced the critical loading rates. The calculated critical phosphorus load ranged from 1.8 to 10.2 g P m−2 year−1, while the calculated critical nitrogen load stretched from 12.1 to 43.8 g N m−2 year−1. The concentration ranges that were derived from the loading rate were 0.19–0.42 mg P l−1 and 1.3–3.3 mg N l−1. Since PCDitch does not distinguish between Lemna spp. and Azolla spp., no definite conclusions were drawn concerning the effects of nitrogen reduction. In a model situation a pristine ditch was loaded with phosphorus, which resulted into complete duckweed coverage during summer within a few years. When reducing the phosphorus load, it took 10 years before the original situation was reached again. Dredging would accelerate the process of recovery significantly, because the water depth would increase and the phosphorus release from the sediments in summer would decrease.

Journal

Aquatic EcologySpringer Journals

Published: Sep 15, 2006

There are no references for this article.