Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Sediment, nutrient and water losses by water erosion under agroforestry systems in the semi-arid region in northeastern Brazil

Sediment, nutrient and water losses by water erosion under agroforestry systems in the semi-arid... Inadequate soil management practices adopted in the Brazilian semi-arid region contribute to erosive processes. Agroforestry systems (AFs) have been considered an alternative to reduce water erosion. This study aimed to evaluate the impact of two alternatives AFs, a traditional and an intensive cropping system on the losses of sediments, water, organic carbon and nutrients caused by water erosion in comparison to the natural vegetation (caatinga) in a semi-arid region of northeastern Brazil. The agroecosystems studied were: agrosilvopasture (AGP) which consisted of an alley cropping system, cultivated with Leucaena leucocephala and maize, within an area composed by 22% of native trees (200 native trees per hectare) which was grazed during the dry season; silvopasture (SILV) that was composed by 38% of native trees (260 trees per hectare) with a stocking rate of 20 ewes during whole year; traditional agrosilvopasture (TRAG) being managed as following: total deforestation, burning of the residues, cropped with maize for 2 years (1998 and 1999) and fallow during 8–10 years; and intensive cropping (IC) system which was deforested and burned in 1997 followed by cultivation of maize from 1998 to 2002, and thereafter by a fallow period of 8–10 years similar to TRAG. Two areas of native forest (NF1, NF2) known as ‘caatinga’, used as grassland during the dry season and as a source of wood, were selected and used as reference of steady state in the comparative study in relation to the cultivated sites. Sediment and water losses as a result of erosion were collected during two rainy seasons, i.e. 2003 and 2004, and nutrients and organic carbon contents were determined. Soil samples were collected and organic carbon, pH in water, pH in KCl, water dispersible clay (WDC) and hydraulic conductivity (K 0 ) were measured. In 2003, sediment and water losses did not differ significantly among all treatments. However, in 2004, TRAG (0.70 Mg ha −1 ) and NF1 (1.37 Mg ha −1 ) showed the highest sediment losses, whereas TRAG and IC presented the highest water losses. On average, nutrients losses in cropped areas were lower than in natural vegetation (NF1, NF2). The alternative AFs (AGP, SILV) were efficient to reduce water erosion effects when compared to the most common agricultural practices adopted in the region, being highly recommended as sustainable technical alternatives for food production in the region. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agroforestry Systems Springer Journals

Sediment, nutrient and water losses by water erosion under agroforestry systems in the semi-arid region in northeastern Brazil

Loading next page...
 
/lp/springer-journals/sediment-nutrient-and-water-losses-by-water-erosion-under-agroforestry-kU9v0jbDBA

References (34)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media B.V.
Subject
Life Sciences; Agriculture; Forestry
ISSN
0167-4366
eISSN
1572-9680
DOI
10.1007/s10457-010-9310-2
Publisher site
See Article on Publisher Site

Abstract

Inadequate soil management practices adopted in the Brazilian semi-arid region contribute to erosive processes. Agroforestry systems (AFs) have been considered an alternative to reduce water erosion. This study aimed to evaluate the impact of two alternatives AFs, a traditional and an intensive cropping system on the losses of sediments, water, organic carbon and nutrients caused by water erosion in comparison to the natural vegetation (caatinga) in a semi-arid region of northeastern Brazil. The agroecosystems studied were: agrosilvopasture (AGP) which consisted of an alley cropping system, cultivated with Leucaena leucocephala and maize, within an area composed by 22% of native trees (200 native trees per hectare) which was grazed during the dry season; silvopasture (SILV) that was composed by 38% of native trees (260 trees per hectare) with a stocking rate of 20 ewes during whole year; traditional agrosilvopasture (TRAG) being managed as following: total deforestation, burning of the residues, cropped with maize for 2 years (1998 and 1999) and fallow during 8–10 years; and intensive cropping (IC) system which was deforested and burned in 1997 followed by cultivation of maize from 1998 to 2002, and thereafter by a fallow period of 8–10 years similar to TRAG. Two areas of native forest (NF1, NF2) known as ‘caatinga’, used as grassland during the dry season and as a source of wood, were selected and used as reference of steady state in the comparative study in relation to the cultivated sites. Sediment and water losses as a result of erosion were collected during two rainy seasons, i.e. 2003 and 2004, and nutrients and organic carbon contents were determined. Soil samples were collected and organic carbon, pH in water, pH in KCl, water dispersible clay (WDC) and hydraulic conductivity (K 0 ) were measured. In 2003, sediment and water losses did not differ significantly among all treatments. However, in 2004, TRAG (0.70 Mg ha −1 ) and NF1 (1.37 Mg ha −1 ) showed the highest sediment losses, whereas TRAG and IC presented the highest water losses. On average, nutrients losses in cropped areas were lower than in natural vegetation (NF1, NF2). The alternative AFs (AGP, SILV) were efficient to reduce water erosion effects when compared to the most common agricultural practices adopted in the region, being highly recommended as sustainable technical alternatives for food production in the region.

Journal

Agroforestry SystemsSpringer Journals

Published: Jul 1, 2010

There are no references for this article.