Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary

Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the... The Delaware River Estuary (DRE) is a cornerstone of industrialization, shipping, and urban usage, and has a long history of human impact on pollution and recovery. Mercury (Hg) is a contaminant of concern in the DRE based upon concentrations in some fish samples that were found to exceed State and Federal fish tissue criteria. Methylation of Hg often follows a seasonal pattern as its production is biologically mediated. Surveys were conducted in November 2011, April 2012, and July 2012 to assess this effect. We sampled surface and bottom water at six sites spanning the estuarine turbidity maximum (ETM) in the main channel of the river, plus three sediment sites at shallow, subtidal locations. Our results indicate there is a clear seasonal increase in both water column and sediment methylmercury (MeHg) and %MeHg concentrations in the ETM during July. Water-column-filtered total mercury (HgT), suspended particle HgT, and MeHg concentrations were found to fluctuate little with location or season in the ETM. In contrast, sediment MeHg, water-column-filtered MeHg, and pore water HgT varied seasonally. Furthermore, pore water MeHg levels were elevated in concert with increased k meth rates in July. Estimated river input and sediment and atmospheric depositional MeHg flux were compared seasonally. River flux was more than an order of magnitude higher than sediment flux in April, coinciding with higher fluvial transport. However, during July, river flux decreases and sediment flux becomes a larger relative source. This trend has potential implications for fish and other biota residing in the DRE during summer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Geochemistry Springer Journals

Seasonal Cycling and Transport of Mercury and Methylmercury in the Turbidity Maximum of the Delaware Estuary

Loading next page...
 
/lp/springer-journals/seasonal-cycling-and-transport-of-mercury-and-methylmercury-in-the-0zt0J2eqPp

References (71)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Earth Sciences; Geochemistry; Hydrology/Water Resources; Hydrogeology
ISSN
1380-6165
eISSN
1573-1421
DOI
10.1007/s10498-015-9283-x
Publisher site
See Article on Publisher Site

Abstract

The Delaware River Estuary (DRE) is a cornerstone of industrialization, shipping, and urban usage, and has a long history of human impact on pollution and recovery. Mercury (Hg) is a contaminant of concern in the DRE based upon concentrations in some fish samples that were found to exceed State and Federal fish tissue criteria. Methylation of Hg often follows a seasonal pattern as its production is biologically mediated. Surveys were conducted in November 2011, April 2012, and July 2012 to assess this effect. We sampled surface and bottom water at six sites spanning the estuarine turbidity maximum (ETM) in the main channel of the river, plus three sediment sites at shallow, subtidal locations. Our results indicate there is a clear seasonal increase in both water column and sediment methylmercury (MeHg) and %MeHg concentrations in the ETM during July. Water-column-filtered total mercury (HgT), suspended particle HgT, and MeHg concentrations were found to fluctuate little with location or season in the ETM. In contrast, sediment MeHg, water-column-filtered MeHg, and pore water HgT varied seasonally. Furthermore, pore water MeHg levels were elevated in concert with increased k meth rates in July. Estimated river input and sediment and atmospheric depositional MeHg flux were compared seasonally. River flux was more than an order of magnitude higher than sediment flux in April, coinciding with higher fluvial transport. However, during July, river flux decreases and sediment flux becomes a larger relative source. This trend has potential implications for fish and other biota residing in the DRE during summer.

Journal

Aquatic GeochemistrySpringer Journals

Published: Nov 20, 2015

There are no references for this article.