Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Schrödinger Equations with Fractional Laplacians

Schrödinger Equations with Fractional Laplacians . It is shown that the unique solution of\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{cases}{\frac{\partial }{\partial t}}\psi & (t, x) = -(z^2)^{\alpha/2}(-triangle)^{\alpha/2}\psi(t, x)+V(z, x)\psi(t, x),\\\psi& (0,x) = f(x), \end{cases}$$\end{document}} can be represented as {\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Psi(t,x)=\Bbb E f(x+(z)^{1/\alpha}X_s)\exp\left\{ \int_0^t V(z, x+(z)^{1\alpha} X_u)\,du\right\},$$\end{document}} where X=(Xt , t≥ 0)is a stable process whose generator is (-Δ)α/2with X0=0 . http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics & Optimization Springer Journals

Schrödinger Equations with Fractional Laplacians

Applied Mathematics & Optimization , Volume 42 (3) – Nov 1, 2000

Loading next page...
 
/lp/springer-journals/schr-dinger-equations-with-fractional-laplacians-6kAERvZlRx

References (4)

Publisher
Springer Journals
Copyright
Copyright © Springer-Verlag New York Inc. 2000
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
DOI
10.1007/s002450010014
Publisher site
See Article on Publisher Site

Abstract

. It is shown that the unique solution of\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{cases}{\frac{\partial }{\partial t}}\psi & (t, x) = -(z^2)^{\alpha/2}(-triangle)^{\alpha/2}\psi(t, x)+V(z, x)\psi(t, x),\\\psi& (0,x) = f(x), \end{cases}$$\end{document}} can be represented as {\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Psi(t,x)=\Bbb E f(x+(z)^{1/\alpha}X_s)\exp\left\{ \int_0^t V(z, x+(z)^{1\alpha} X_u)\,du\right\},$$\end{document}} where X=(Xt , t≥ 0)is a stable process whose generator is (-Δ)α/2with X0=0 .

Journal

Applied Mathematics & OptimizationSpringer Journals

Published: Nov 1, 2000

Keywords: Fractional Laplacian; Schrödinger equations; Analytic continuation; Symmetric stable processes; Feynman—Kac formula; Exponential integrability; Markov property; AMS Classification. Primary 60H05, 60H10, Secondary 90A09, 90A12.

There are no references for this article.