Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Scheduling electric vehicles

Scheduling electric vehicles The vehicle scheduling problem (VSP) is a traditional problem in public transport. One of the main assumptions is that buses can be operated the whole day without any interruption for refueling etc. Recently, new technological innovations have led to the introduction of electric vehicles (EVs). For these new vehicles, we cannot ignore the need of refueling during the day, as the range of an electric bus is severely limited, because of the capacity of the batteries. In this paper, we study the electric VSP (e-VSP), where we use EVs with a limited range. During the day the batteries can be charged; in this paper we assume that a battery cannot be replaced/substituted. We present two models that differ in the level of detail resembling the actual processes. In our first model, we assume a linear charging process, work with a constant price of electricity during the day, and do not take the effect of the depth-of-discharge on the lifetime of the battery into account. Our second model resembles practice much better: we allow any type of charging process, work with the actual electricity prices, and take the depreciation cost of the battery into account. To keep this model tractable, however, we approximate the exact value of the charge by discretizing it. The refined model can be solved to optimality using integer linear programming for instances of small/medium size, and therefore, we describe two other solution methods based on column generation that find good, but not necessarily optimal, solutions for large instances. We have tested our algorithms on real-world instances. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Public Transport Springer Journals

Scheduling electric vehicles

Public Transport , Volume 9 (2) – Jun 12, 2017

Loading next page...
 
/lp/springer-journals/scheduling-electric-vehicles-n3UvFlE8lw

References (10)

Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Business and Management; Operation Research/Decision Theory; Automotive Engineering; Computer-Aided Engineering (CAD, CAE) and Design; Transportation
ISSN
1866-749X
eISSN
1613-7159
DOI
10.1007/s12469-017-0164-0
Publisher site
See Article on Publisher Site

Abstract

The vehicle scheduling problem (VSP) is a traditional problem in public transport. One of the main assumptions is that buses can be operated the whole day without any interruption for refueling etc. Recently, new technological innovations have led to the introduction of electric vehicles (EVs). For these new vehicles, we cannot ignore the need of refueling during the day, as the range of an electric bus is severely limited, because of the capacity of the batteries. In this paper, we study the electric VSP (e-VSP), where we use EVs with a limited range. During the day the batteries can be charged; in this paper we assume that a battery cannot be replaced/substituted. We present two models that differ in the level of detail resembling the actual processes. In our first model, we assume a linear charging process, work with a constant price of electricity during the day, and do not take the effect of the depth-of-discharge on the lifetime of the battery into account. Our second model resembles practice much better: we allow any type of charging process, work with the actual electricity prices, and take the depreciation cost of the battery into account. To keep this model tractable, however, we approximate the exact value of the charge by discretizing it. The refined model can be solved to optimality using integer linear programming for instances of small/medium size, and therefore, we describe two other solution methods based on column generation that find good, but not necessarily optimal, solutions for large instances. We have tested our algorithms on real-world instances.

Journal

Public TransportSpringer Journals

Published: Jun 12, 2017

There are no references for this article.