Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Resting State fMRI-guided Fiber Clustering: Methods and Applications

Resting State fMRI-guided Fiber Clustering: Methods and Applications Clustering streamline fibers derived from diffusion tensor imaging (DTI) data into functionally meaningful bundles with group-wise correspondences across individuals and populations has been a fundamental step for tract-based analysis of white matter integrity and brain connectivity modeling. Many approaches of fiber clustering reported in the literature so far used geometric and/or anatomic information derived from structural MRI and/or DTI data only. In this paper, we take a novel, alternative multimodal approach of combining resting state fMRI (rsfMRI) and DTI data, and propose to use functional coherence as the criterion to guide the clustering of fibers derived from DTI tractography. Specifically, the functional coherence between two streamline fibers is defined as their rsfMRI time series’ correlations, and the affinity propagation (AP) algorithm is used to cluster DTI-derived streamline fibers into bundles. Currently, we use the corpus callosum (CC) fibers, which are the largest fiber bundle in the brain, as a test-bed for methodology development and validation. Our experimental results have shown that the proposed rsfMRI-guided fiber clustering method can achieve functionally homogeneous bundles that are reasonably consistent across individuals and populations, suggesting the close relationship between structural connectivity and brain function. The clustered fiber bundles were evaluated and validated via the benchmark data provided by task-based fMRI, via reproducibility studies, and via comparison with other methods. Finally, we have applied the proposed framework on a multimodal rsfMRI/DTI dataset of schizophrenia (SZ) and reproducible results were obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroinformatics Springer Journals

Resting State fMRI-guided Fiber Clustering: Methods and Applications

Loading next page...
 
/lp/springer-journals/resting-state-fmri-guided-fiber-clustering-methods-and-applications-SQ0lAPIbP8
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Bioinformatics; Computational Biology/Bioinformatics; Computer Appl. in Life Sciences; Neurology
ISSN
1539-2791
eISSN
1559-0089
DOI
10.1007/s12021-012-9169-7
pmid
23065648
Publisher site
See Article on Publisher Site

Abstract

Clustering streamline fibers derived from diffusion tensor imaging (DTI) data into functionally meaningful bundles with group-wise correspondences across individuals and populations has been a fundamental step for tract-based analysis of white matter integrity and brain connectivity modeling. Many approaches of fiber clustering reported in the literature so far used geometric and/or anatomic information derived from structural MRI and/or DTI data only. In this paper, we take a novel, alternative multimodal approach of combining resting state fMRI (rsfMRI) and DTI data, and propose to use functional coherence as the criterion to guide the clustering of fibers derived from DTI tractography. Specifically, the functional coherence between two streamline fibers is defined as their rsfMRI time series’ correlations, and the affinity propagation (AP) algorithm is used to cluster DTI-derived streamline fibers into bundles. Currently, we use the corpus callosum (CC) fibers, which are the largest fiber bundle in the brain, as a test-bed for methodology development and validation. Our experimental results have shown that the proposed rsfMRI-guided fiber clustering method can achieve functionally homogeneous bundles that are reasonably consistent across individuals and populations, suggesting the close relationship between structural connectivity and brain function. The clustered fiber bundles were evaluated and validated via the benchmark data provided by task-based fMRI, via reproducibility studies, and via comparison with other methods. Finally, we have applied the proposed framework on a multimodal rsfMRI/DTI dataset of schizophrenia (SZ) and reproducible results were obtained.

Journal

NeuroinformaticsSpringer Journals

Published: Oct 12, 2012

References