Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi

Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of... Response of Theobroma cacao L. (cacao) and the shade tree Inga edulis Mart. (inga) seedlings from an organically-grown cacao plantation to inoculation with native arbuscular mycorrhizae forming fungi (AMF) was studied in a cross-inoculation assay under greenhouse conditions. Seedlings of inga and cacao were grown in pots filled with heat-treated soil from the plantation. Control was heat-treated soil without inoculum and roots of cacao and inga from the plantation were applied as AMF inocula. Undisturbed soil blocks were used as a “positive control” of the inoculation potential of untreated soil and roots combined. No AMF structures were observed in the roots of either species in the heat-treated control. All inocula were infective in both hosts and the differences in the total AMF colonization percentage between the hosts were not significant but inga had significantly higher colonization by hyphal coils and arbuscules. Cacao roots but neither inga roots nor soil block inocula stimulated cacao growth. All inocula significantly increased growth of inga, which had higher relative mycorrhizal responsiveness than cacao. Thus, in spite of the strong infectivity of the inocula in both hosts, cacao and inga responded differently to the same AMF populations. The strong conspecific preference of cacao suggests that attention must be paid to the AMF inoculum used for this species. However, the strong response of inga to cacao root inoculum indicates that the two species may share same AMF symbionts, thus enabling positive interactions between them, including formation of common mycelial networks. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agroforestry Systems Springer Journals

Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi

Loading next page...
 
/lp/springer-journals/response-of-theobroma-cacao-and-inga-edulis-seedlings-to-cross-kwWFZwbx90

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Agriculture; Forestry
ISSN
0167-4366
eISSN
1572-9680
DOI
10.1007/s10457-011-9400-9
Publisher site
See Article on Publisher Site

Abstract

Response of Theobroma cacao L. (cacao) and the shade tree Inga edulis Mart. (inga) seedlings from an organically-grown cacao plantation to inoculation with native arbuscular mycorrhizae forming fungi (AMF) was studied in a cross-inoculation assay under greenhouse conditions. Seedlings of inga and cacao were grown in pots filled with heat-treated soil from the plantation. Control was heat-treated soil without inoculum and roots of cacao and inga from the plantation were applied as AMF inocula. Undisturbed soil blocks were used as a “positive control” of the inoculation potential of untreated soil and roots combined. No AMF structures were observed in the roots of either species in the heat-treated control. All inocula were infective in both hosts and the differences in the total AMF colonization percentage between the hosts were not significant but inga had significantly higher colonization by hyphal coils and arbuscules. Cacao roots but neither inga roots nor soil block inocula stimulated cacao growth. All inocula significantly increased growth of inga, which had higher relative mycorrhizal responsiveness than cacao. Thus, in spite of the strong infectivity of the inocula in both hosts, cacao and inga responded differently to the same AMF populations. The strong conspecific preference of cacao suggests that attention must be paid to the AMF inoculum used for this species. However, the strong response of inga to cacao root inoculum indicates that the two species may share same AMF symbionts, thus enabling positive interactions between them, including formation of common mycelial networks.

Journal

Agroforestry SystemsSpringer Journals

Published: Sep 1, 2011

There are no references for this article.