Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Representing and evaluating ultrasonic maps using active snake contours and Kohonen’s self-organizing feature maps

Representing and evaluating ultrasonic maps using active snake contours and Kohonen’s... Active snake contours and Kohonen’s self-organizing feature maps (SOMs) are employed for representing and evaluating discrete point maps of indoor environments efficiently and compactly. A generic error criterion is developed for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. Guidelines for selecting and optimizing the parameters of active snake contours and SOMs are provided using uniform sampling of the parameter space and particle swarm optimization (PSO). A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Representing and evaluating ultrasonic maps using active snake contours and Kohonen’s self-organizing feature maps

Autonomous Robots , Volume 29 (2) – May 4, 2010

Loading next page...
 
/lp/springer-journals/representing-and-evaluating-ultrasonic-maps-using-active-snake-5GdgNwj0Qe

References (42)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Engineering; Computer Imaging, Vision, Pattern Recognition and Graphics; Artificial Intelligence (incl. Robotics); Control , Robotics, Mechatronics; Robotics and Automation
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-010-9181-4
Publisher site
See Article on Publisher Site

Abstract

Active snake contours and Kohonen’s self-organizing feature maps (SOMs) are employed for representing and evaluating discrete point maps of indoor environments efficiently and compactly. A generic error criterion is developed for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. Guidelines for selecting and optimizing the parameters of active snake contours and SOMs are provided using uniform sampling of the parameter space and particle swarm optimization (PSO). A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities.

Journal

Autonomous RobotsSpringer Journals

Published: May 4, 2010

There are no references for this article.