Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper establishes a removable singularity theorem for the quasilinear elliptic equations with source terms like -Δpu=a|u|q+b|∇u|s+c|u|σ|∇u|τ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} -\Delta _p u = a |u|^q + b|\nabla u|^s + c|u|^\sigma |\nabla u|^\tau \end{aligned}$$\end{document}with nonnegative bounded Borel measurable functions a, b, c and positive numbers q,s,σ,τ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q,s,\sigma ,\tau $$\end{document}. In particular, we give upper bounds of exponents q,s,σ,τ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$q,s,\sigma ,\tau $$\end{document} and a sharp growth condition for nonnegative weak solutions in RN\E\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^N{\setminus } E$$\end{document} to be extended to the whole of RN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^N$$\end{document} as solutions, when E is a compact set satisfying a uniform Minkowski condition.
"Bulletin of the Brazilian Mathematical Society, New Series" – Springer Journals
Published: Jan 15, 2022
Keywords: Removable singularity; Quasilinear elliptic equation; Wolff potential; Primary 35J92 Secondary 31C45; 35B60
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.