Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Remark on Regularity Criterion Via Pressure in Anisotropic Lebesgue Spaces to the 3d Navier–Stokes Equations

Remark on Regularity Criterion Via Pressure in Anisotropic Lebesgue Spaces to the 3d... In this remark, we consider regularity criterion for weak solutions to the 3d incompressible Navier–Stokes equations via pressure. It is proved that if the corressponding pressure P\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$P$\end{document} satisfies ∇h˜P∈Lβ(0,T;Lp(Rx1;Lq(Rx2;Lr(Rx3))))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}} P\in L^{\beta}(0,T;L^{p}(\mathbb{R}_{x_{1}};L^{q}( \mathbb{R}_{x_{2}};L^{r}(\mathbb{R}_{x_{3}}))))$\end{document} with 2β+1p+1q+1r=3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{2}{\beta}+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3$\end{document}, 65<p,q,r≤3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{6}{5}< p, q, r \leq 3$\end{document} and 2−(1p+1q+1r)≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$2-\big(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\big) \geq 0$\end{document}, then the weak solution remains smooth on (0,T]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(0,T]$\end{document}. Here, ∇h˜=(0,∂2,∂3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}}=(0,\partial _{2},\partial _{3})$\end{document}. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Applicandae Mathematicae Springer Journals

Remark on Regularity Criterion Via Pressure in Anisotropic Lebesgue Spaces to the 3d Navier–Stokes Equations

Acta Applicandae Mathematicae , Volume 185 (1) – Jun 1, 2023

Loading next page...
 
/lp/springer-journals/remark-on-regularity-criterion-via-pressure-in-anisotropic-lebesgue-GUz0IHjBc0
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
ISSN
0167-8019
eISSN
1572-9036
DOI
10.1007/s10440-023-00573-7
Publisher site
See Article on Publisher Site

Abstract

In this remark, we consider regularity criterion for weak solutions to the 3d incompressible Navier–Stokes equations via pressure. It is proved that if the corressponding pressure P\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$P$\end{document} satisfies ∇h˜P∈Lβ(0,T;Lp(Rx1;Lq(Rx2;Lr(Rx3))))\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}} P\in L^{\beta}(0,T;L^{p}(\mathbb{R}_{x_{1}};L^{q}( \mathbb{R}_{x_{2}};L^{r}(\mathbb{R}_{x_{3}}))))$\end{document} with 2β+1p+1q+1r=3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{2}{\beta}+\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=3$\end{document}, 65<p,q,r≤3\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\frac{6}{5}< p, q, r \leq 3$\end{document} and 2−(1p+1q+1r)≥0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$2-\big(\frac{1}{p}+\frac{1}{q}+\frac{1}{r}\big) \geq 0$\end{document}, then the weak solution remains smooth on (0,T]\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$(0,T]$\end{document}. Here, ∇h˜=(0,∂2,∂3)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\nabla _{\tilde{h}}=(0,\partial _{2},\partial _{3})$\end{document}.

Journal

Acta Applicandae MathematicaeSpringer Journals

Published: Jun 1, 2023

Keywords: Navier–Stokes equations; Weak solution; Regularity criterion; Pressure; Anisotropic Lebesgue spaces; 35B65; 35Q35

References