Access the full text.
Sign up today, get DeepDyve free for 14 days.
Lithium-sulfur (Li-S) batteries have attracted intensive attention owing to their ultrahigh theoretical energy density. Nevertheless, the practical application of Li-S batteries is prevented by uncontrollable shuttle effect and retarded reaction kinetics. To address the above issues, lithium fluoride (LiF) was employed to regulate the surface chemistry of routine separator. The functional separator demonstrates a great ability to suppress active S loss and protect lithium anode. This work provides a facile strategy for the development of advanced Li-S batteries.
Frontiers in Energy – Springer Journals
Published: Aug 1, 2022
Keywords: Li-S batteries; LiF; functional separator
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.