Access the full text.
Sign up today, get DeepDyve free for 14 days.
Revista Brasileira de Ornitologia 27(1): 27 7 7–30. ARTICLE March 2019 Recurrent seasonal occurrence of the Lineated Woodpecker ( ( (Dryocopus lineatus s s) in a riparian fragment of the Atlantic Forest, northeastern Brazil 1,4 1 2 3 Rafael Menezes , Georgiana M. Pimentel , Ricardo S. Rosa a a & Alan Loures Ribeiro Programa de Pós-graduação em Ciências Biológicas (Zoologia), Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil. Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, PB, Brazil. Laboratório de Ornitologia, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa, PB, Brazil. Corresponding author: rafaelmenez@gmail.com Received on 28 July 2018. Accepted on 27 March 2019. ABSTRACT: Riparian forests play important roles as ecological corridors and refuge habitat for many bird populations in fragmented landscapes. Th is report describes the seasonal occurrence of the Lineated Woodpecker (Dryocopus lineatus s s) in a small riparian fragment of Atlantic Forest, northeastern Brazil. A female was recorded by its visual and acoustical signals from September to October 2014. Similar occurrences were observed in the same months over three consecutive years. Two major hypotheses regarding the woodpecker seasonal occurrence are discussed here: i) the use of the riparian fragment for breeding, evidenced by tree-cavity nests; and ii) fleein g of the bird from its natal habitat due to fire in ad jacent sugarcane fields, which commonly are burned in these two months. Such recurrent events suggest that D. lineatus uses the riparian fragment as refuge habitat, highlighting the importance of these environments for bird populations that inhabit fragmented landscapes of the Brazilian Atlantic Forest. KEY-WORDS: breeding, cavity-nesting birds, Picidae, refuge habitat, sugarcane burning. INTRODUCTION inhabiting the Pernambuco Endemism Center than other areas. Riparian forests are interface zones between terrestrial Woodpeckers (Picidae) are forest-dependent birds, and aquatic systems characterized by high nutrients in which the species richness is closely associated with tree cycling and fl ood-infl uenced seasonal resources (Naiman cover (Ilsøe et al. 2017), being widely used as bioindicators & Décamps 1997). Birds use these environments as of changes in forest structure (Mikusiński 2006, Vergara- ecological corridors for crossing habitats and as refuge for Tabares et al. 2018). Th e Picidae is a speciose group feeding and breeding (Knopf & Samson 1994). In Brazil, across South America with c. 83 species (Erize et al. the riparian forests are essential for maintenance of bird 2006) that display key ecological roles as builders of tree- fauna in fragmented environments (Anjos et al. 2007), cavities (excavators), which are used as nests for many hosting increased species richness in rivers with larger species (Cockle et al. 2011, Gorman 2014). The Lineated riparian margin width (Ramos & Anjos 2014). Woodpecker Dryocopus lineatus s (Linnaeus, 1766) is a Th e Brazilian Atlantic Forest is recognized as one tropical widespread species, ranging from Mexico to of the major biodiversity hotspots around the world northeastern Argentina (Malekan 2011, Gorman 2014). (Myers et al. 2000). Historically, the domain has largely In South America, it occurs in Argentina, Bolivia, been reduced to fragmented landscapes as a result from Paraguay and throughout Brazil (Sick 1997), from the human-disturbances, with only 11.7% of its original core to edges of the forest fragments (Stotz et al. 1996). coverage remaining (Ribeiro et al. 2009). Despite highly Its acoustical signals are easily identifi able, especially fragmented, the northeastern region of the Atlantic Forest when drilling soft-woods (drumming) for feeding on (known as Pernambuco Endemism Center) shelters a rich small insects, such as ants and beetles (Malekan 2011). and endemic avifauna (Silva et al. 2004) within forest Th is report describes the recurrent seasonal patches often surrounded by sugarcane fields. Therefore, occurrence of D. lineatus in an Atlantic Forest riparian riparian fragments may display higher, deeper and more fragment, northeastern Brazil. Because similar events complex ecological interactions with bird populations occurred along years (2015, 2016 and 2017), always Seasonal occurrence of the Dryocopus lineatus in the Atlantic Forest Menezes et al. tree, foraging on small insects (ants). For this record, between September and October months, we suggest that researchers (R.M. and G.M.P.) were at the exact point the woodpecker uses the riparian fragment to refuge for o o (7 10'16.2''S; 35 00'12.9''W), where local residents had breeding or escaping from the burning of sugarcane fields around its natal habitat. previously reported sighting the bird. A playback sound with the laughing call of the species (download freely from WikiAves) was used for attracting the woodpecker, METHODS as a response to the territorial behavior (Gorman 2014). The site is a farm with 74 ha (c. 70% of forest cover) A female of D. lineatus was photographed (Fig. 1) on 23 surrounded by sugarcane fi elds and pineapple plantations. September 2014 at ~07:50 h in a small riparian fragment The vegetation is typical of secondary stage composed by a of Atlantic Forest of the Pernambuco Endemism Center high abundance of Arecaceae, Cecropiaceae and senescent trees. Tibiri River crosses the forest fragment entirely (Fig. at the Santa Rita municipality, Paraíba state, northeastern 2A) forming microhabitats similar to floodplains and Brazil. Its sex was determined by the presence of a black spot on the anterior region of the head and by the wetlands in some areas. absence of a red stripe on the cheek (Erize et al. 2006). It remained ~5 min on a branch of a Cecropia palmata RESULTS Visual and acoustical signals of the bird were recorded until October 2014 and ~6 tree-cavity nests (Fig. 2B) were accounted in the area. Th e most common sounds were territorial calling and drumming. Sighting of the woodpeckers were reported by local residents on each consecutive year (2015, 2016 and 2017) after the initial record in 2014, including a low-resolution video provided by one of them in 2016 (supplementary material). They also reported that the detections of the bird started in September and lasted until October, with often more than one individual observed at the same time. Th e Figure 1. Female Dryocopus lineatus on a branch of Cecropia authors validated the information provided by residents palmata in the riparian fragment of Atlantic Forest, Santa Rita by showing photos of the bird (i.e. species identification) (Paraíba state), northeastern Brazil. Photo author: Georgiana and inquiring about the record (e.g., microhabitat, Pimentel. Figure 2. Tibiri River within the forest fragment in which Dryocopus lineatus was recorded ( ( (A A A). Tree-cavity nest of woodpecker on a dead tree (snag; B). Photo author: Rafael Menezes. Revista Brasileira de Ornitologia 27(1): 2019 Seasonal occurrence of the Dryocopus lineatus in the Atlantic Forest Menezes et al. sounds, size). It is worth mentioning that only piculet woodpeckers are probably large forest remnants of legal species (Picuminae, Picidae) occur in the area, with the reserve (i.e. 20% of preserved native forest within a absence of larger woodpeckers that could be confused property) belonging to sugarcane companies, which are with D. lineatus s [e.g., Crimson-Crested Woodpecker located closer to the riparian fragment. In this sense, the Campephilus melanoleucos (Gmelin, 1788)]. The same bird fled from its natal habitat to the riparian fragment local ancient residents claimed that the occurrence of in order i) to avoid fire-caused in juries (Lyon & Marzluff woodpeckers is very recent in this area, because they were 1985); or ii) to increase the forage on small invertebrates never seen or heard them before 2014. that escape to the forest patches nearby the fire-disturbed area (Vasconcelos et al. 2009). Fire eff ects on birds are species-specific and the harms increase with high-severity DISCUSSION burning (Barlow et al. 2002, 2006). The landscape connectivity facilitates the bir d The recent appearance of woodpecker can be movement among nearby forest fragments (Uezu et related to well-preserved traits of the riparian fragment, al. 2005), and this has been recorded for large-bodied as supported by occurrence of other birds [e.g., Aramides woodpeckers, such as D. martius s (Gil-Tena et al. 2013) cajaneus (Statius-Muller, 1776), Porphyrio martinicus and Campephilus magellanicus s (King, 1828) (Vergara et al. (Linnaeus, 1766)] and mammals [e.g., Lontra longicaudis 2019). Recent studies have documented that woodpeckers (Olfers, 1818), Dasyprocta spp.) indicators of healthy disperse to neighboring patches mainly for foraging environments. Th e high habitat heterogeneity in riparian activities, with the movement decision influenced b y the fragment (e.g., dead tree areas, Cecropiaceae soft-wood habitat quality (Vergara et al. 2015, 2019). It is likely that zones, and fl oodplains) may also be an ecological driver D. lineatus s used the riparian vegetation as an ecological for the species presence. In corroboration, recent studies corridor for crossing from its natal habitat to the patch have shown that Dryocopus martius (Linnaeus, 1758) uses site. Indeed, riparian corridors have been shown eff ective a wide variety of forest environments in the Italian Alps for movement among habitats for forest specialist birds (Bocca et al. 2007), D. lineatus prefers dead tree areas (Gillies & Clair 2008). However, there is no study that (snags) in Santa Fe de Antioquia/Colombia (Granada- reports seasonal movement behavior or dispersal ability Ríos & Mancera-Rodríguez 2015) and D. pileatus for the species up to date, which raises the need of (Linnaeus, 1758) has the home range limited by the monitoring studies to understand patterns of use of forest snags abundance in lowland forest of the United States patches by these birds. (Tomasevick & Marzluff 2018). Although the riparian Th e seasonal occurrence of D. lineatus s in the fragment is relatively small, the high preservation degree riparian fragment suggests its use as refuge habitat, but coupled with habitat heterogeneity, especially dead the available information is insuffi cient for an unbiased tree areas, may have promoted the immigration of the definition re garding the two hypotheses on the ecological woodpecker. drivers operating at the population level. Further Two major hypotheses are addressed here for the observations on breeding habits and the use of mark woodpecker seasonal occurrence. First, D. lineatus s used recapture techniques are required. Such recurrent events the riparian fragment as breeding refuge, as individuals highlight the importance of river-edge environments were observed using the tree-cavity nests in 2014 (R.M., for forest-dependent birds that inhabit fragmented pers. obs.). Th e use of nests was also reported by local landscapes of the Brazilian Atlantic Forest. residents on each year (2015, 2016 and 2017) between September and October months. Diff erent breeding periods have been documented for D. lineatus s around ACKNOWLEDGEMENTS the world, including March–April in Panama, April–May in Belize (Caribbean) and February–April in Trinidad We thank Severino M. Oliveira (owner of site) for the and Suriname (Malekan 2011). These records reveal a access to the site, to the local residents for providing short-time breeding (2–3 months), which sustain the information on woodpeckers, and to the anonymous hypothesis of breeding-related seasonal occurrence. referees for the valuable suggestions for improving the Nevertheless, comprehensive information on biology and manuscript. R.M. is grateful to the CAPES for Ph.D. ecology of this species is scarce in Brazil, especially on scholarship. breeding, nesting and roosting. Secondly, the woodpecker dispersed to the riparian fragment driven by pre-harvesting sugarcane burning REFERENCES around its natal habitat. The region harbors large Anjos L.D., Volpato G.H., Lopes E.V., Serafini P.P., Poletto F. & Aleixo sugarcane fi elds and the burning practice commonly A. 2007. The importance of riparian forest for the maintenance occurs over September and October. Natal habitats of Revista Brasileira de Ornitologia 27(1): 2019 Seasonal occurrence of the Dryocopus lineatus in the Atlantic Forest Menezes et al. of bird species richness in an Atlantic Forest remnant, southern Myers N., Mittermeier R.A., Mittermeier C.G., Fonseca G.A.B. Brazil. Revista Brasileira de Zoologia a 24: 1078–1086. & Kent J. 2000. Biodiversity hotspots for conservation Barlow J., Haugaasen T. & Peres C.A. 2002. Effects of ground fires priorities. Nature e 403: 853–858. on understorey bird assemblages in Amazonian Forests. Biological Naiman R.J. & Décamps H. 1997. The ecolo gy of interfaces: riparian Conservation 105: 157–169. zones. Annual Review of Ecology and Systematics s 28: 621–658. Barlow J., Peres C.A., Henriques L.M.P., Stouffer P.C. & Wunderle Ramos C.C.O. & Anjos L. 2014. Th e width and biotic integrity of J.M. 2006. The responses of understorey birds to forest riparian forests aff ect richness, abundance, and composition of fragmentation, logging and wildfires: an Amazonian synthesis. bird communities. Natureza & Conservação 12: 59–64. Biological Conservation 128: 182–192. Ribeiro M.C., Metzger J.P., Martensen A.C., Ponzoni F.J. & Hirota Bocca M., Carisio L. & Rolando A. 2007. Habitat use, home ranges M.M. 2009. The Brazilian Atlantic Forest: how much is left , and census techniques in the Black Woodpecker Dryocopus martius and how is the remaining forest distributed? Implications for in the Alps. Ardea 95: 17–29. conservation. Biological Conservation 142: 1141–1153. Cockle K.L., Martin K. & Wesolowski T. 2011. Woodpeckers, Sick H. 1997. Ornitologia Brasileira. Rio de Janeiro: Editora Nova decay, and the future of cavity-nesting vertebrate communities Fronteira. worldwide. Frontiers in Ecology and the Environments s 9: 377–382. Silva J.M.C., Sousa M.C. & Castelletti C.H.M. 2004. Areas of Erize F., Mata J.R. & Rumboll M. 2006. Birds of South American: non- endemism for passerine birds in the Atlantic Forest, South passerines (rheas to woodpeckers). Princeton: Princeton University America. Global Ecology and Biogeography y 13: 85–92. Press. Stotz D.F., Fitzpatrick J.W., Parker-III T.A. & Moskovits D.K. 1996. Gillies C.S. & Clair C.C.S. 2008. Riparian corridors enhance Neotropical birds: ecology and conservation. Chicago: University of movement of a forest specialist bird in fragmented tropical forest. Chicago Press. Proceeding of the National Academy of Sciences of the United States Tomasevic J.A. & Marzluff J.M. 2018. S pace use of suburban Pileated of America a 105: 19774–19779. Woodpeckers (Dryocopus pileatus s s): insights on the relationship Gil-Tena A., Brotons L., Fortin M.J., Burel F. & Saura S. 2013. between home range, core areas, and territory. Oecologia a 187: Assessing the role of landscape connectivity in recent woodpecker 15–23. range expansion in Mediterranean Europe: forest management Uezu A., Metzger J.P. & Vielliard J.M.E. 2005. Effects of structural implications. European Journal of Forest Research h 132: 181–194. and functional connectivity and patch size on the abundance of Gorman G. 2014. Woodpeckers of the world: the complete guide. seven Atlantic Forest bird species. Biological Conservation 123: London: Christopher Helm. 507–519. Granada-Ríos H.D. & Mancera-Rodríguez N.J. 2015. Aspectos Vasconcelos H.L., Pacheco R., Silva R.C., Vasconcelos P.B., Lopes ecológicos del Carpintero Dryocopus lineatus s (Linnaeus, 1766) C.T., Costa A.N. & Bruna E.M. 2009. Dynamics of leaf-litter en Santa Fe de Antioquia, Colombia. Ambiente y Desarrollo 19: arthropod fauna following fire in Neotropical woodland Savanna. 33–48. PLoS ONE E 4: e7762. Ilsøe S.K., Kissling W.D., Fjeldså J., Sandel B. & Svenning J.C. 2017. Vergara P.M., Saura S., Pérez-Hernández C.G. & Soto G.E. 2015. Global variation in woodpecker species richness shaped by tree Hierarchical spatial decisions in fragmented landscapes: modeling availability. Journal of Biogeography 44: 1824–1835. the foraging movements of woodpeckers. Ecological Modelling Knopf F.L. & Samson F.B. 1994. Scale perspectives on avian diversity 300: 114–122. in western riparian ecosystems. Conservation Biology 8: 669–676. Vergara P.M., Soto G.E., Rodewald A.D. & Quiroz M. 2019. Lyon L.J. & Marzluff J.M. 1985. Fire's eff ects on a small bird Behavioral switching in Magellanic Woodpeckers reveals population, p. 16–22. In: Lotan J.E. & Brown J.K. (eds.). perception of habitat quality at diff erent spatial scales. Landscape Fire's eff ects on wildlife habitat: symposium proceedings. Missoula: Ecology y 34: 79–92. Intermountain Research Station. Vergara-Tabares D.L., Lammertink M., Verga E.G., Schaaf A.A. & Malekan I.S. 2011. Lineated Woodpecker (Dryocopus lineatus s s). In: Nori J. 2018. Gone with the forest: assessing global woodpecker Schulenberg T.S. (ed.). Neotropical birds online. Ithaca: Cornell conservation from land use patterns. Diversity and Distributions Lab of Ornithology. https://doi.org/10.2173/nb.linwoo1.01 24: 640–651. (Access on 15 May 2018). Mikusiński G. 2006. Woodpeckers: distribution, conservation, and research in a global perspective. Annales Zoologici Fennici i 43: 86–95. Associate Editor: Marcos P. Dantas. Revista Brasileira de Ornitologia 27(1): 2019
Ornithology Research – Springer Journals
Published: Mar 1, 2019
Keywords: breeding; cavity-nesting birds; Picidae; refuge habitat; sugarcane burning
You can share this free article with as many people as you like with the url below! We hope you enjoy this feature!
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.