Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Reassessment of fenestration characteristics for residential buildings in hot climates: energy and economic analysis

Reassessment of fenestration characteristics for residential buildings in hot climates: energy... This paper attempts to resolve the reported contradiction in the literature about the characteristics of high-performance/cost-effective fenestration of residential buildings, particularly in hot climates. The considered issues are the window glazing property (ten commercial glazing types), facade orientation (four main orientations), window-to-wall ratio (WWR) (0.2–0.8), and solar shading overhangs and side-fins (nine shading conditions). The results of the simulated runs reveal that the glazing quality has a superior effect over the other fenestration parameters and controls their effect on the energy consumption of residential buildings. Thus, using low-performance windows on buildings yields larger effects of WWR, facade orientation, and solar shading than high-performance windows. As the WWR increases from 0.2 to 0.8, the building energy consumption using the low-performance window increases 6.46 times than that using the highperformance window. The best facade orientation is changed from north to south according to the glazing properties. In addition, the solar shading need is correlated as a function of a window-glazing property and WWR. The cost analysis shows that the high-performance windows without solar shading are cost-effective as they have the largest net present cost compared to low-performance windows with or without solar shading. Accordingly, replacing low-performance windows with high-performance ones, in an existing residential building, saves about 12.7 MWh of electricity and 11.05 tons of CO2 annually. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Frontiers in Energy Springer Journals

Reassessment of fenestration characteristics for residential buildings in hot climates: energy and economic analysis

Loading next page...
 
/lp/springer-journals/reassessment-of-fenestration-characteristics-for-residential-buildings-DznH8zxh0B
Publisher
Springer Journals
Copyright
Copyright © Higher Education Press 2021
ISSN
2095-1701
eISSN
2095-1698
DOI
10.1007/s11708-021-0799-z
Publisher site
See Article on Publisher Site

Abstract

This paper attempts to resolve the reported contradiction in the literature about the characteristics of high-performance/cost-effective fenestration of residential buildings, particularly in hot climates. The considered issues are the window glazing property (ten commercial glazing types), facade orientation (four main orientations), window-to-wall ratio (WWR) (0.2–0.8), and solar shading overhangs and side-fins (nine shading conditions). The results of the simulated runs reveal that the glazing quality has a superior effect over the other fenestration parameters and controls their effect on the energy consumption of residential buildings. Thus, using low-performance windows on buildings yields larger effects of WWR, facade orientation, and solar shading than high-performance windows. As the WWR increases from 0.2 to 0.8, the building energy consumption using the low-performance window increases 6.46 times than that using the highperformance window. The best facade orientation is changed from north to south according to the glazing properties. In addition, the solar shading need is correlated as a function of a window-glazing property and WWR. The cost analysis shows that the high-performance windows without solar shading are cost-effective as they have the largest net present cost compared to low-performance windows with or without solar shading. Accordingly, replacing low-performance windows with high-performance ones, in an existing residential building, saves about 12.7 MWh of electricity and 11.05 tons of CO2 annually.

Journal

Frontiers in EnergySpringer Journals

Published: Aug 1, 2022

Keywords: parametric analysis; high-performance window; window-to-wall ratio (WWR); facade orientation; solar shading; cost analysis

References