Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Real-time solving of computationally hard problems using optimal algorithm portfolios

Real-time solving of computationally hard problems using optimal algorithm portfolios Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Mathematics and Artificial Intelligence Springer Journals

Real-time solving of computationally hard problems using optimal algorithm portfolios

Loading next page...
 
/lp/springer-journals/real-time-solving-of-computationally-hard-problems-using-optimal-0pjobZdAjr

References (34)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2020
ISSN
1012-2443
eISSN
1573-7470
DOI
10.1007/s10472-020-09704-4
Publisher site
See Article on Publisher Site

Abstract

Various hard real-time systems have a desired requirement which is impossible to fulfill: to solve a computationally hard optimization problem within a short and fixed amount of time T, e.g., T = 0.5 seconds. For such a task, the exact, exponential algorithms, as well as various Polynomial-Time Approximation Schemes, are irrelevant because they can exceed T. What is left in practice is to combine various anytime algorithms in a parallel portfolio. The question is how to build such an optimal portfolio, given a budget of K computing cores. It is certainly not as simple as choosing the K best performing algorithms, because their results are possibly correlated (e.g., there is no point in choosing two good algorithm for the portfolio if they win on a similar set of instances). We prove that the decision variant of this problem is NP-complete, and furthermore that the optimization problem is approximable. On the practical side, our main contribution is a solution of the optimization problem of choosing K algorithms out of n, for a machine with K computing cores, and the related problem of detecting the minimum number of required cores to achieve an optimal portfolio, with respect to a given training set of instances. As a benchmark, we took instances of a hard optimization problem that is prevalent in the real-time industry, in which the challenge is to decide on the best action within time T. We include the results of numerous experiments that compare the various methods. Hence, a side effect of our tests is that it gives the first systematic empirical evaluation of the relative success of various known stochastic-search algorithms in coping with a hard combinatorial optimization problems under a very short and fixed timeout.

Journal

Annals of Mathematics and Artificial IntelligenceSpringer Journals

Published: Aug 28, 2020

There are no references for this article.