Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Real-time path planning for long-term information gathering with an aerial glider

Real-time path planning for long-term information gathering with an aerial glider Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Real-time path planning for long-term information gathering with an aerial glider

Loading next page...
 
/lp/springer-journals/real-time-path-planning-for-long-term-information-gathering-with-an-gZGmCHZC5A

References (65)

Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-015-9515-3
Publisher site
See Article on Publisher Site

Abstract

Autonomous thermal soaring offers an opportunity to extend the flight duration of unmanned aerial vehicles (UAVs). In this work, we introduce the informative soaring problem, where a gliding UAV performs an information gathering mission while simultaneously replenishing energy from known thermal energy sources. We pose this problem in a way that combines convex optimisation with graph search and present four path planning algorithms with complementary characteristics. Using a target-search task as a motivating example, finite-horizon and Monte Carlo tree search methods are shown to be appropriate for situations with little prior knowledge, but suffer from either myopic planning or high computation cost in more complex scenarios. These issues are addressed by two novel tree search algorithms based on creating clusters that associate high uncertainty regions with nearby thermals. The cluster subproblems are solved independently to generate local plans, which are then linked together. Numerical simulations show that these methods find high-quality nonmyopic plans quickly. The more promising cluster-based method, which uses dynamic programming to compute a total ordering over clusters, is demonstrated in hardware tests on a UAV. Fifteen-minute plans are generated in less than four seconds, facilitating online replanning when simulated thermals are added or removed in-flight.

Journal

Autonomous RobotsSpringer Journals

Published: Oct 30, 2015

There are no references for this article.