Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Ratios of Entire Functions and Generalized Stieltjes Functions

Ratios of Entire Functions and Generalized Stieltjes Functions Monotonicity properties of the ratio logf(x+a1)⋯f(x+an)f(x+b1)⋯f(x+bn),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \log \frac{f(x+a_1)\cdots f(x+a_n)}{f(x+b_1)\cdots f(x+b_n)}, \end{aligned}$$\end{document}where f is an entire function are investigated. Earlier results for Euler’s gamma function and other entire functions of genus 1 are generalised to entire functions of genus p with negative zeros. Derivatives of order comparable to p of the expression above are related to generalised Stieltjes functions of order p+1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p+1$$\end{document}. Our results are applied to the Barnes multiple gamma functions. We also show how recent results on the behaviour of Euler’s gamma function on vertical lines can be sharpened and generalised to functions of higher genus. Finally a connection to the so-called Prouhet-Tarry-Escott problem is described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

Ratios of Entire Functions and Generalized Stieltjes Functions

Loading next page...
 
/lp/springer-journals/ratios-of-entire-functions-and-generalized-stieltjes-functions-bAoZXGaBbj
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00405-5
Publisher site
See Article on Publisher Site

Abstract

Monotonicity properties of the ratio logf(x+a1)⋯f(x+an)f(x+b1)⋯f(x+bn),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\begin{aligned} \log \frac{f(x+a_1)\cdots f(x+a_n)}{f(x+b_1)\cdots f(x+b_n)}, \end{aligned}$$\end{document}where f is an entire function are investigated. Earlier results for Euler’s gamma function and other entire functions of genus 1 are generalised to entire functions of genus p with negative zeros. Derivatives of order comparable to p of the expression above are related to generalised Stieltjes functions of order p+1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p+1$$\end{document}. Our results are applied to the Barnes multiple gamma functions. We also show how recent results on the behaviour of Euler’s gamma function on vertical lines can be sharpened and generalised to functions of higher genus. Finally a connection to the so-called Prouhet-Tarry-Escott problem is described.

Journal

Computational Methods and Function TheorySpringer Journals

Published: Sep 1, 2022

Keywords: Entire function; Laplace transform; Generalized Stieltjes function; Euler’s Gamma function; Barnes G-function; Primary 26A48; Secondary 30E20; 44A10

References