Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Quantization for Spectral Super-Resolution

Quantization for Spectral Super-Resolution We show that the method of distributed noise-shaping beta-quantization offers superior performance for the problem of spectral super-resolution with quantization whenever there is redundancy in the number of measurements. More precisely, we define the over-sampling ratio λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document} as the largest integer such that ⌊M/λ⌋-1≥4/Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor M/\lambda \rfloor - 1\ge 4/\Delta $$\end{document}, where M denotes the number of Fourier measurements and Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document} is the minimum separation distance associated with the atomic measure to be resolved. We prove that for any number K≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K\ge 2$$\end{document} of quantization levels available for the real and imaginary parts of the measurements, our quantization method combined with either TV-min/BLASSO or ESPRIT guarantees reconstruction accuracy of order O(M1/4λ5/4K-λ/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{1/4}\lambda ^{5/4} K^{- \lambda /2})$$\end{document} and O(M3/2λ1/2K-λ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{3/2} \lambda ^{1/2} K^{- \lambda })$$\end{document}, respectively, where the implicit constants are independent of M, K and λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document}. In contrast, naive rounding or memoryless scalar quantization for the same alphabet offers a guarantee of order O(M-1K-1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{-1}K^{-1})$$\end{document} only, regardless of the reconstruction algorithm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Constructive Approximation Springer Journals

Quantization for Spectral Super-Resolution

Constructive Approximation , Volume 56 (3) – Dec 1, 2022

Loading next page...
 
/lp/springer-journals/quantization-for-spectral-super-resolution-sZgDYLZRvR

References (35)

Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
ISSN
0176-4276
eISSN
1432-0940
DOI
10.1007/s00365-022-09574-5
Publisher site
See Article on Publisher Site

Abstract

We show that the method of distributed noise-shaping beta-quantization offers superior performance for the problem of spectral super-resolution with quantization whenever there is redundancy in the number of measurements. More precisely, we define the over-sampling ratio λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document} as the largest integer such that ⌊M/λ⌋-1≥4/Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lfloor M/\lambda \rfloor - 1\ge 4/\Delta $$\end{document}, where M denotes the number of Fourier measurements and Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document} is the minimum separation distance associated with the atomic measure to be resolved. We prove that for any number K≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$K\ge 2$$\end{document} of quantization levels available for the real and imaginary parts of the measurements, our quantization method combined with either TV-min/BLASSO or ESPRIT guarantees reconstruction accuracy of order O(M1/4λ5/4K-λ/2)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{1/4}\lambda ^{5/4} K^{- \lambda /2})$$\end{document} and O(M3/2λ1/2K-λ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{3/2} \lambda ^{1/2} K^{- \lambda })$$\end{document}, respectively, where the implicit constants are independent of M, K and λ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda $$\end{document}. In contrast, naive rounding or memoryless scalar quantization for the same alphabet offers a guarantee of order O(M-1K-1)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$O(M^{-1}K^{-1})$$\end{document} only, regardless of the reconstruction algorithm.

Journal

Constructive ApproximationSpringer Journals

Published: Dec 1, 2022

Keywords: Quantization; Super-resolution; Spectral estimation; Total variation; ESPRIT; 94A12; 94A20

There are no references for this article.