Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

QTL Analysis for Root Protein in a Backcross Family of Cassava Derived from Manihot esculenta ssp flabellifolia

QTL Analysis for Root Protein in a Backcross Family of Cassava Derived from Manihot esculenta ssp... Root protein content of elite cassava is very low, largely due to breeder’s selection for other agronomic traits mainly fresh weight yield and disease resistance. Increased protein content in the root of cassava will improve its usefulness as a more complete food source in the developing world. An inter-specific F1 hybrid CW 198 - 11 was earlier developed at International Center for Tropical Agriculture (CIAT), Cali, Colombia by genetic crosses of OW 230 - 1 (FLA 441 - 5) and CW 30–65 (an inter-specific hybrid between an improved cassava variety SG 427 - 87 and an accession of Manihot esculenta ssp flabellifolia (MESCFLAX – 80)). The inter-specific cross was ‘backcrossed’, in the sense of another cross to cassava (MTAI – 8) to generate a B1P2 family with 225 progenies in which major quantitative trait loci (QTL) for root protein in the backcross population of cassava were identified. A linkage map from the female parent of the backcross population was used for QTL detection. A total of three QTL (protg.7, protg.13 and protg.23) controlling protein were identified in three different environments. One QTL was expressed across all three environments. These results demonstrated high broad sense heritability of 61.6% for protein over 2 years, in two different locations. The individual effects of alleles at these QTL explained from 15% to 25% of the phenotypic variance. The consistency of QTL controlling protein across environments reveals their potential for use in marker-assisted recurrent selection. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

QTL Analysis for Root Protein in a Backcross Family of Cassava Derived from Manihot esculenta ssp flabellifolia

Loading next page...
 
/lp/springer-journals/qtl-analysis-for-root-protein-in-a-backcross-family-of-cassava-derived-ngKBc3Uh76

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Plant Genetics & Genomics; Plant Sciences; Plant Ecology; Transgenics; Plant Breeding/Biotechnology
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-012-9095-8
Publisher site
See Article on Publisher Site

Abstract

Root protein content of elite cassava is very low, largely due to breeder’s selection for other agronomic traits mainly fresh weight yield and disease resistance. Increased protein content in the root of cassava will improve its usefulness as a more complete food source in the developing world. An inter-specific F1 hybrid CW 198 - 11 was earlier developed at International Center for Tropical Agriculture (CIAT), Cali, Colombia by genetic crosses of OW 230 - 1 (FLA 441 - 5) and CW 30–65 (an inter-specific hybrid between an improved cassava variety SG 427 - 87 and an accession of Manihot esculenta ssp flabellifolia (MESCFLAX – 80)). The inter-specific cross was ‘backcrossed’, in the sense of another cross to cassava (MTAI – 8) to generate a B1P2 family with 225 progenies in which major quantitative trait loci (QTL) for root protein in the backcross population of cassava were identified. A linkage map from the female parent of the backcross population was used for QTL detection. A total of three QTL (protg.7, protg.13 and protg.23) controlling protein were identified in three different environments. One QTL was expressed across all three environments. These results demonstrated high broad sense heritability of 61.6% for protein over 2 years, in two different locations. The individual effects of alleles at these QTL explained from 15% to 25% of the phenotypic variance. The consistency of QTL controlling protein across environments reveals their potential for use in marker-assisted recurrent selection.

Journal

Tropical Plant BiologySpringer Journals

Published: Feb 21, 2012

There are no references for this article.