Access the full text.
Sign up today, get DeepDyve free for 14 days.
Abstract The growth rate of the liquid contact layer may be influenced by an electric current at contact melting. Depending on the direction, the electric current speeds up or slows down the liquid layer growth in comparison with the diffusion regime (no-current mode). It is shown that if the current flowing in the "accelerating" direction is decreased inversely proportional to the square root of time, the time law of the liquid layer growth will be identical to the diffusion mode. The proposed pseudo-diffusion mode is implemented for the bismuth-indium system at 75°C. Results of calculations of the mobility and the effective charge of the melt ions are presented.
Thermophysics and Aeromechanics – Springer Journals
Published: Mar 1, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.