Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Preparation and electrochemical properties of nano Al0.2V2O5.3−δ cathode materials for rechargeable lithium batteries

Preparation and electrochemical properties of nano Al0.2V2O5.3−δ cathode materials for... Nano-sized Al3+-doped V2O5 cathode materials, Al0.2V2O5.3−δ , were prepared by an oxalic acid assisted sol–gel method at 350 °C (sample A) and 400 °C (sample B). X-ray diffraction confirmed that samples A and B were pure phase Al0.2V2O5.3−δ with an orthorhombic structure close to that of V2O5. Scanning electron microscopy showed that sample A was in nanoscale with a mean particle size about 50 nm. Cyclic voltammetry showed the good electrochemical and structural reversibility of the Al0.2V2O5.3−δ nanoparticles during the Li+ insertion/extraction process. The Al0.2V2O5.3−δ nanoparticles exhibited excellent charge–discharge cycling performance and rate capability compared to that of bulky V2O5 electrodes. For instance, the materials delivered a reversible specific capacity about 180 mAh g−1 (sample A) and 150 mAh g−1 (sample B), in the potential window of 4.0–2.0 V at the current density of 150 mA g−1. The Al0.2V2O5.3−δ nanoparticles in particular showed almost no capacity fading for at least 50 cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

Preparation and electrochemical properties of nano Al0.2V2O5.3−δ cathode materials for rechargeable lithium batteries

Ionics , Volume 16 (3) – Nov 21, 2009

Loading next page...
 
/lp/springer-journals/preparation-and-electrochemical-properties-of-nano-al0-2v2o5-3-cathode-GZ9K1UpSFq

References (13)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Chemistry; Condensed Matter Physics; Optical and Electronic Materials; Renewable and Green Energy; Electrochemistry
ISSN
0947-7047
eISSN
1862-0760
DOI
10.1007/s11581-009-0399-0
Publisher site
See Article on Publisher Site

Abstract

Nano-sized Al3+-doped V2O5 cathode materials, Al0.2V2O5.3−δ , were prepared by an oxalic acid assisted sol–gel method at 350 °C (sample A) and 400 °C (sample B). X-ray diffraction confirmed that samples A and B were pure phase Al0.2V2O5.3−δ with an orthorhombic structure close to that of V2O5. Scanning electron microscopy showed that sample A was in nanoscale with a mean particle size about 50 nm. Cyclic voltammetry showed the good electrochemical and structural reversibility of the Al0.2V2O5.3−δ nanoparticles during the Li+ insertion/extraction process. The Al0.2V2O5.3−δ nanoparticles exhibited excellent charge–discharge cycling performance and rate capability compared to that of bulky V2O5 electrodes. For instance, the materials delivered a reversible specific capacity about 180 mAh g−1 (sample A) and 150 mAh g−1 (sample B), in the potential window of 4.0–2.0 V at the current density of 150 mA g−1. The Al0.2V2O5.3−δ nanoparticles in particular showed almost no capacity fading for at least 50 cycles.

Journal

IonicsSpringer Journals

Published: Nov 21, 2009

There are no references for this article.