Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Polyelectrolyte multilayer coated nanofibrous mats: Controlled surface morphology and cell culture

Polyelectrolyte multilayer coated nanofibrous mats: Controlled surface morphology and cell culture Abstract We reported the controlled surface morphologies and the cell culture of polyelectrolyte multilayer coated nylon 6 fibrous mats with different number of layers. Polyelectrolyte multilayer coated nylon 6 fibers were successfully prepared by an alternative deposition of alginic acid sodium salt and chitosan via a Layer-by-Layer (LbL) electrostatic self-assembly. The surface morphology, stiffness, and hydrophilicity of polyelectrolyte multilayer coated nylon 6 fibrous mats could be finely tuned by regulating the number of polyelectrolyte nanocoating. It was observed that the morphology of polyelectrolyte multilayer coated nylon 6 fibers was uniform and smooth, indicating a dense and harder nanocoating of polyelectrolytes onto nylon 6 fibers. Compared to pure nylon 6 fibrous mat (tensile strength ∼10.6±1 MPa), the tensile strength of polyelectrolyte coated nylon 6 fibrous mats was largely increased to 35.2±2 MPa for 5 bilayers coated fiber mats. In addition, it was found that at an initial stage after 1 day of cell culturing, the electrospun nylon 6 fibrous mats coated with 5 bilayer of alginic acid and chitosan show the highest cell affinity (good adhesion), while the electrospun nylon 6 fibrous mats coated with 10 bilayer show the lowest cell affinity. After cell seeding for 3 days, it was observed that rate of proliferation is enhanced by increasing the number of bilayer up to 3 bilayers (good proliferation), and then drastically decreased with further increasing the number of bilayer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Fibers and Polymers Springer Journals

Polyelectrolyte multilayer coated nanofibrous mats: Controlled surface morphology and cell culture

Loading next page...
 
/lp/springer-journals/polyelectrolyte-multilayer-coated-nanofibrous-mats-controlled-surface-yIZ72Fp4QY

References (28)

Publisher
Springer Journals
Copyright
2009 The Korean Fiber Society and Springer Netherlands
ISSN
1229-9197
eISSN
1875-0052
DOI
10.1007/s12221-009-0419-8
Publisher site
See Article on Publisher Site

Abstract

Abstract We reported the controlled surface morphologies and the cell culture of polyelectrolyte multilayer coated nylon 6 fibrous mats with different number of layers. Polyelectrolyte multilayer coated nylon 6 fibers were successfully prepared by an alternative deposition of alginic acid sodium salt and chitosan via a Layer-by-Layer (LbL) electrostatic self-assembly. The surface morphology, stiffness, and hydrophilicity of polyelectrolyte multilayer coated nylon 6 fibrous mats could be finely tuned by regulating the number of polyelectrolyte nanocoating. It was observed that the morphology of polyelectrolyte multilayer coated nylon 6 fibers was uniform and smooth, indicating a dense and harder nanocoating of polyelectrolytes onto nylon 6 fibers. Compared to pure nylon 6 fibrous mat (tensile strength ∼10.6±1 MPa), the tensile strength of polyelectrolyte coated nylon 6 fibrous mats was largely increased to 35.2±2 MPa for 5 bilayers coated fiber mats. In addition, it was found that at an initial stage after 1 day of cell culturing, the electrospun nylon 6 fibrous mats coated with 5 bilayer of alginic acid and chitosan show the highest cell affinity (good adhesion), while the electrospun nylon 6 fibrous mats coated with 10 bilayer show the lowest cell affinity. After cell seeding for 3 days, it was observed that rate of proliferation is enhanced by increasing the number of bilayer up to 3 bilayers (good proliferation), and then drastically decreased with further increasing the number of bilayer.

Journal

Fibers and PolymersSpringer Journals

Published: Aug 1, 2009

Keywords: Polymer Sciences

There are no references for this article.