Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Phylogeny and Molecular Evolution of miR820 and miR396 microRNA Families in Oryza AA Genomes

Phylogeny and Molecular Evolution of miR820 and miR396 microRNA Families in Oryza AA Genomes The phylogeny and evolution of the microRNA families, miR820 and miR396, was analysed across the AA genomes of the Oryza species, the close relatives of domesticated rice. A highly dynamic evolution of the miR820 family was revealed. The number of copies of MIR820 genes, their chromosomal location and the mature microRNA sequence varied greatly with a total of 16 novel miR820 variants being identified. The phylogeny of pre-MIR820 sequences revealed that MIR820 genes of recently evolved Oryza AA genomes may have derived from sequence divergence of one or a few ancestral genes found in wild Australian perennial rice populations, Taxon B (jpn2)-MIR820 genes. Genomic scale duplication played an important role in the evolution of some of the miR396 family genes in AA genome Oryza species. miR396 family contained a MIR396 gene cluster (MIR396a and MIR396c) which was conserved across the cereal genomes. Nucleotide diversity analysis at these two MIR396 loci revealed that domesticated rice has retained less than 10% of the total diversity present in wild species. In contrast, the nucleotide sequence of four MIR396 loci remained almost conserved across domesticated and wild rices, indicating that they were under extreme functional constraint and may be involved in regulating some fundamental processes which are important both for wild and domesticated rices. Expression analysis demonstrated that miR820 variants were expressed in O. glaberrima O. barthi and O. longistaminata genome. These findings pose new challenges to explain the possible role of miR820 variants identified. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tropical Plant Biology Springer Journals

Phylogeny and Molecular Evolution of miR820 and miR396 microRNA Families in Oryza AA Genomes

Loading next page...
 
/lp/springer-journals/phylogeny-and-molecular-evolution-of-mir820-and-mir396-microrna-ddjiQd0kxv

References (50)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Plant Sciences; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Plant Ecology; Transgenics
ISSN
1935-9756
eISSN
1935-9764
DOI
10.1007/s12042-017-9197-4
Publisher site
See Article on Publisher Site

Abstract

The phylogeny and evolution of the microRNA families, miR820 and miR396, was analysed across the AA genomes of the Oryza species, the close relatives of domesticated rice. A highly dynamic evolution of the miR820 family was revealed. The number of copies of MIR820 genes, their chromosomal location and the mature microRNA sequence varied greatly with a total of 16 novel miR820 variants being identified. The phylogeny of pre-MIR820 sequences revealed that MIR820 genes of recently evolved Oryza AA genomes may have derived from sequence divergence of one or a few ancestral genes found in wild Australian perennial rice populations, Taxon B (jpn2)-MIR820 genes. Genomic scale duplication played an important role in the evolution of some of the miR396 family genes in AA genome Oryza species. miR396 family contained a MIR396 gene cluster (MIR396a and MIR396c) which was conserved across the cereal genomes. Nucleotide diversity analysis at these two MIR396 loci revealed that domesticated rice has retained less than 10% of the total diversity present in wild species. In contrast, the nucleotide sequence of four MIR396 loci remained almost conserved across domesticated and wild rices, indicating that they were under extreme functional constraint and may be involved in regulating some fundamental processes which are important both for wild and domesticated rices. Expression analysis demonstrated that miR820 variants were expressed in O. glaberrima O. barthi and O. longistaminata genome. These findings pose new challenges to explain the possible role of miR820 variants identified.

Journal

Tropical Plant BiologySpringer Journals

Published: Dec 26, 2017

There are no references for this article.