Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Photosynthate production in laboratory cultures (UV conditioned and unconditioned) of Cryptomonas erosa under simulated doses of UV radiation

Photosynthate production in laboratory cultures (UV conditioned and unconditioned) of Cryptomonas... We used a device called a Phototron to measure the effects of UV radiation on the cosmopolitan algae, Cryptomonas erosa, grown in continuous cultures. In the Phototron, we investigated changes in photosynthetic parameters (Pmax – specific production rate at optimal light intensity; α – initial slope of the linear portion of the Photosynthesis-Irradiance curve; and θ – the convexity or rate of bending) and carbon allocation as a function of irradiance at three different environmentally-realistic doses of UV radiation in unconditioned (no prior UV exposure) and conditioned algae (15 d previous UV exposure). For unconditioned control algae, Pmax-Total was lower, although not significantly, than the two highest UV treatments. For conditioned control algae, Pmax-Total was higher, although not significantly, than all UV treatments. Our data suggest that short term (4 h) exposure to low levels of UV (8.09 W m−2 unweighted) does not affect Pmax-Total in C. erosa, but does change the proportion of carbon allocated to lipids and proteins. Also, comparisons of lipids, polysaccharides and proteins as a percent of total carbon uptake between unconditioned and conditioned algae indicate that exposure history to UV radiation can have a negative impact on carbon allocation to lipids and proteins, in a wetland alga species that is crucial to the efficient transfer of energy through freshwater food webs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Aquatic Ecology Springer Journals

Photosynthate production in laboratory cultures (UV conditioned and unconditioned) of Cryptomonas erosa under simulated doses of UV radiation

Aquatic Ecology , Volume 32 (4) – Oct 16, 2004

Loading next page...
 
/lp/springer-journals/photosynthate-production-in-laboratory-cultures-uv-conditioned-and-xiffb15kic

References (59)

Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Freshwater & Marine Ecology; Ecosystems
ISSN
1386-2588
eISSN
1573-5125
DOI
10.1023/A:1009911811188
Publisher site
See Article on Publisher Site

Abstract

We used a device called a Phototron to measure the effects of UV radiation on the cosmopolitan algae, Cryptomonas erosa, grown in continuous cultures. In the Phototron, we investigated changes in photosynthetic parameters (Pmax – specific production rate at optimal light intensity; α – initial slope of the linear portion of the Photosynthesis-Irradiance curve; and θ – the convexity or rate of bending) and carbon allocation as a function of irradiance at three different environmentally-realistic doses of UV radiation in unconditioned (no prior UV exposure) and conditioned algae (15 d previous UV exposure). For unconditioned control algae, Pmax-Total was lower, although not significantly, than the two highest UV treatments. For conditioned control algae, Pmax-Total was higher, although not significantly, than all UV treatments. Our data suggest that short term (4 h) exposure to low levels of UV (8.09 W m−2 unweighted) does not affect Pmax-Total in C. erosa, but does change the proportion of carbon allocated to lipids and proteins. Also, comparisons of lipids, polysaccharides and proteins as a percent of total carbon uptake between unconditioned and conditioned algae indicate that exposure history to UV radiation can have a negative impact on carbon allocation to lipids and proteins, in a wetland alga species that is crucial to the efficient transfer of energy through freshwater food webs.

Journal

Aquatic EcologySpringer Journals

Published: Oct 16, 2004

There are no references for this article.