Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Periodic solutions to Navier-Stokes equations on non-compact Einstein manifolds with negative curvature

Periodic solutions to Navier-Stokes equations on non-compact Einstein manifolds with negative... Consider the Navier-Stokes Equations (NSE) for viscous incompressible fluid flows on a non-compact, smooth, simply-connected and complete Einstein manifold (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document} with negative Ricci curvature tensor. We prove the existence and uniqueness of a time-periodic solution to NSE for vector fields on (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document}. Our method is based on the dispersive and smoothing properties of the semigroup generated by the linearized Stokes equations to construct a bounded (in time) solution of the nonhomogeneous Stokes equation and on the ergodic method to obtain the periodic solution to Stokes equation. Then, using the fixed point arguments, we can pass from the Stokes equations to Navier-Stokes equations to obtain periodic solutions to NSE on the Einstein manifold (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document}. We also prove the stability of the periodic solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Analysis and Mathematical Physics Springer Journals

Periodic solutions to Navier-Stokes equations on non-compact Einstein manifolds with negative curvature

Loading next page...
 
/lp/springer-journals/periodic-solutions-to-navier-stokes-equations-on-non-compact-einstein-K4J4ZN7Kig
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021
ISSN
1664-2368
eISSN
1664-235X
DOI
10.1007/s13324-021-00488-2
Publisher site
See Article on Publisher Site

Abstract

Consider the Navier-Stokes Equations (NSE) for viscous incompressible fluid flows on a non-compact, smooth, simply-connected and complete Einstein manifold (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document} with negative Ricci curvature tensor. We prove the existence and uniqueness of a time-periodic solution to NSE for vector fields on (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document}. Our method is based on the dispersive and smoothing properties of the semigroup generated by the linearized Stokes equations to construct a bounded (in time) solution of the nonhomogeneous Stokes equation and on the ergodic method to obtain the periodic solution to Stokes equation. Then, using the fixed point arguments, we can pass from the Stokes equations to Navier-Stokes equations to obtain periodic solutions to NSE on the Einstein manifold (M,g)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\mathbf {M},g)$$\end{document}. We also prove the stability of the periodic solution.

Journal

Analysis and Mathematical PhysicsSpringer Journals

Published: Feb 17, 2021

There are no references for this article.