Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Periodic Solution of a Nonautonomous Diffusive Food Chain System of Three Species with Time Delays

Periodic Solution of a Nonautonomous Diffusive Food Chain System of Three Species with Time Delays By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for a nonautonomous diffusive food chain system of three species. $$ \left\{ \begin{aligned} & \frac{{dx_{1} {\left( t \right)}}} {{dt}} = x_{1} {\left( t \right)}{\left[ {r_{1} {\left( t \right)} - a_{{11}} {\left( t \right)}x_{1} {\left( t \right)} - a_{{12}} {\left( t \right)}x_{2} {\left( t \right)}} \right]} + D_{1} {\left( t \right)}{\left[ {y{\left( t \right)} - x_{1} {\left( t \right)}} \right]}, \\ & \frac{{dx_{2} {\left( t \right)}}} {{dt}} = x_{2} {\left( t \right)}{\left[ { - r_{2} {\left( t \right)} + a_{{21}} {\left( t \right)}x_{1} {\left( {t - \tau _{1} } \right)} - a_{{22}} {\left( t \right)}x_{2} {\left( t \right)} - a_{{23}} {\left( t \right)}x_{3} {\left( t \right)}} \right]}, \\ & \frac{{dx_{3} {\left( t \right)}}} {{dt}} = x_{3} {\left( t \right)}{\left[ { - r_{3} {\left( t \right)} + a_{{32}} {\left( t \right)}x_{2} {\left( {t - \tau _{2} } \right)} - a_{{33}} {\left( t \right)}x_{3} {\left( t \right)}} \right]}, \\ & \frac{{dy{\left( t \right)}}} {{dt}} = y{\left( t \right)}{\left[ {r_{4} {\left( t \right)} - a_{{44}} {\left( t \right)}y{\left( t \right)}} \right]} + D_{2} {\left( t \right)}{\left[ {x_{1} {\left( t \right)} - y{\left( t \right)}} \right]}, \\ \end{aligned} \right. $$ is established, where r i (t), a ii (t) (i = 1, 2, 3, 4), D i (t) (i = 1, 2), a 12(t), a 21(t), a 23(t) and a 32(t) are all positive periodic continuous functions with period w > 0, τ i (i = 1, 2) are positive constants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mathematicae Applicatae Sinica Springer Journals

Periodic Solution of a Nonautonomous Diffusive Food Chain System of Three Species with Time Delays

Loading next page...
 
/lp/springer-journals/periodic-solution-of-a-nonautonomous-diffusive-food-chain-system-of-88ahFxiYpX

References (13)

Publisher
Springer Journals
Copyright
Copyright © 2003 by Springer-Verlag Berlin Heidelberg
Subject
Mathematics; Applications of Mathematics; Math Applications in Computer Science; Theoretical, Mathematical and Computational Physics
ISSN
0168-9673
eISSN
1618-3932
DOI
10.1007/s10255-003-0142-y
Publisher site
See Article on Publisher Site

Abstract

By using the continuation theorem of coincidence degree theory, the existence of a positive periodic solution for a nonautonomous diffusive food chain system of three species. $$ \left\{ \begin{aligned} & \frac{{dx_{1} {\left( t \right)}}} {{dt}} = x_{1} {\left( t \right)}{\left[ {r_{1} {\left( t \right)} - a_{{11}} {\left( t \right)}x_{1} {\left( t \right)} - a_{{12}} {\left( t \right)}x_{2} {\left( t \right)}} \right]} + D_{1} {\left( t \right)}{\left[ {y{\left( t \right)} - x_{1} {\left( t \right)}} \right]}, \\ & \frac{{dx_{2} {\left( t \right)}}} {{dt}} = x_{2} {\left( t \right)}{\left[ { - r_{2} {\left( t \right)} + a_{{21}} {\left( t \right)}x_{1} {\left( {t - \tau _{1} } \right)} - a_{{22}} {\left( t \right)}x_{2} {\left( t \right)} - a_{{23}} {\left( t \right)}x_{3} {\left( t \right)}} \right]}, \\ & \frac{{dx_{3} {\left( t \right)}}} {{dt}} = x_{3} {\left( t \right)}{\left[ { - r_{3} {\left( t \right)} + a_{{32}} {\left( t \right)}x_{2} {\left( {t - \tau _{2} } \right)} - a_{{33}} {\left( t \right)}x_{3} {\left( t \right)}} \right]}, \\ & \frac{{dy{\left( t \right)}}} {{dt}} = y{\left( t \right)}{\left[ {r_{4} {\left( t \right)} - a_{{44}} {\left( t \right)}y{\left( t \right)}} \right]} + D_{2} {\left( t \right)}{\left[ {x_{1} {\left( t \right)} - y{\left( t \right)}} \right]}, \\ \end{aligned} \right. $$ is established, where r i (t), a ii (t) (i = 1, 2, 3, 4), D i (t) (i = 1, 2), a 12(t), a 21(t), a 23(t) and a 32(t) are all positive periodic continuous functions with period w > 0, τ i (i = 1, 2) are positive constants.

Journal

Acta Mathematicae Applicatae SinicaSpringer Journals

Published: Nov 2, 2015

There are no references for this article.