Access the full text.
Sign up today, get DeepDyve free for 14 days.
This study presents a thorough investigation of the performance comparison of three ensemble data assimilation (DA) methods, including the maximum likelihood ensemble filter (MLEF), the ensemble Kalman filter (EnKF), and the iterative EnKF (IEnKF), with respect to solution accuracy and computational efficiency for nonlinear problems. The convection–diffusion–reaction (CDR) problem is first tested, and then, the chaotic Lorenz 96 model is solved. Both linear and nonlinear observation operators are considered. The study demonstrates that MLEF consistently produces more accurate and efficient solution than the other two methods and provides more information on both states and their uncertainties. The IEnKF and MLEF are used to estimate model parameters and uncertainty in initial conditions using a nonlinear observation operator. The assimilation performance is assessed based on the quality metrics, such as the squared true error, the trace of the error covariance matrix, and the root-mean-square (RMS) error. Based on these DA performance assessments, MLEF demonstrates better convergence and higher accuracy. Results of the CDR problem show significant improvements in the estimate of model parameters and the solution accuracy by MLEF compared to the EnKF family. This study provides evidence supporting the choice of MLEF when solving large nonlinear problems.
Research in the Mathematical Sciences – Springer Journals
Published: Dec 1, 2022
Keywords: Data assimilation; Maximum likelihood ensemble filter; Ensemble Kalman filter; CFD Modeling with data assimilation; Ensemble data assimilation methods
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.