Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper provides a rigorous convergence rate and complexity analysis for a recently introduced framework, called PDE acceleration, for solving problems in the calculus of variations and explores applications to obstacle problems. PDE acceleration grew out of a variational interpretation of momentum methods, such as Nesterov’s accelerated gradient method and Polyak’s heavy ball method, that views acceleration methods as equations of motion for a generalized Lagrangian action. Its application to convex variational problems yields equations of motion in the form of a damped nonlinear wave equation rather than nonlinear diffusion arising from gradient descent. These accelerated PDEs can be efficiently solved with simple explicit finite difference schemes where acceleration is realized by an improvement in the CFL condition from $$\mathrm{d}t\sim \mathrm{d}x^2$$ d t ∼ d x 2 for diffusion equations to $$\mathrm{d}t\sim \mathrm{d}x$$ d t ∼ d x for wave equations. In this paper, we prove a linear convergence rate for PDE acceleration for strongly convex problems, provide a complexity analysis of the discrete scheme, and show how to optimally select the damping parameter for linear problems. We then apply PDE acceleration to solve minimal surface obstacle problems, including double obstacles with forcing, and stochastic homogenization problems with obstacles, obtaining state-of-the-art computational results.
Research in the Mathematical Sciences – Springer Journals
Published: Oct 31, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.