Access the full text.
Sign up today, get DeepDyve free for 14 days.
Many materials in modern civil engineering applications, such as interlayers for laminated safety glass, are polymer-based. These materials are showing distinct viscoelastic (strain-rate) and temperature dependent behaviour. In literature, different mathematical representations of these phenomena exist. A common one is the ‘Prony-series’ representation, which is implemented in many state-of-the-art Finite-Element-Analysis-Software to incorporate linear viscoelastic material behaviour. The Prony-parameters at a certain reference temperature can either be determined by relaxation or retardation experiments in the time domain or with a steady state oscillation in the frequency domain in the so called ‘Dynamic Mechanical Thermal Analysis’ followed by a ‘Time–Temperature-Superposition-Principle’. However, present research shows that polymeric materials also may need to have constitutive equations which include hyperelasticity (nonlinear stress–strain behaviour in a quasi-static condition) when undergoing large deformations, so that the material model should be expanded for a more realistic representation in numerical simulations. A novel method for the whole identification process for a numerical material model in terms of a linear Generalized Maxwell Model (Prony-series) based on experimental data will be presented. Furthermore, material parameters for different hyperelastic material models based on experimental investigations will be shown and compared. Future research activities as well as extensions of the presented novel method are also highlighted within this paper.
Glass Structures & Engineering – Springer Journals
Published: Jul 7, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.