Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Rosenblum, J. Rovnyak (1994)
Topics in Hardy Classes and Univalent Functions
DA Brannan, JG Clunie, WE Kirwan (1973)
On the Coefficient Problem for Functions of Bounded Boundary RotationAnn. Acad. Sci. Fenn. Ser. A, 523
W James (1972)
Noonan, boundary behavior of functions with bounded boundary rotationJ. Math. Anal. Appl., 38
DA Brannan (1973)
3Ann. Acad. Sci. Fenn. Ser. A, 523
S. Ponnusamy, S. Sahoo, T. Sugawa (2019)
Hornich Operations on Functions of Bounded Boundary Rotations and Order $$\alpha $$αComputational Methods and Function Theory
VV Andreev, MB Bekker, JA Cima (2022)
Paatero?s V(k)\documentclass[12pt]{minimal}Proc. Am. Math. Soc., 150
V. Andreev, Miron Bekker, J. Cima (2021)
Paatero’s 𝑉(𝑘) space and Pinchuk’s result
A Joseph (1969)
Cima, On the dual of Hornich?s spaceProc. Am. Math. Soc., 22
C Loewner (1917)
Untersuchungen �ber die Verzerrung bei konformen Abbildungen des Einheitskreises |z|<1\documentclass[12pt]{minimal}Ber. Verh. Sächs. Gess. Wiss. Leipzig, 69
VV Andreev (2022)
1711Proc. Am. Math. Soc., 150
A Joseph (1969)
102Proc. Am. Math. Soc., 22
H Hornich (1969)
Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten FunktionenMonatsh Math., 73
S Ponnusamy, SK Sahoo, T Sugawa (2019)
Hornich operations on functions of bounded boundary rotations and order ?\documentclass[12pt]{minimal}Comput. Methods Funct. Theory, 19
J. Cima, J. Pfaltzgraff (1970)
A Banach space of locally univalent functions.Michigan Mathematical Journal, 17
JA Cima (1970)
321Mich. Math. J., 17
In this article we consider Paatero’s classes V(k) of functions of bounded boundary rotation as subsets of the Hornich space H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal H$$\end{document}. We show that for a fixed k≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$k\ge 2$$\end{document} the set V(k) is a closed and convex subset of H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal H$$\end{document} and is not compact. We identify the extreme points of V(k) in H\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathcal H$$\end{document}.
Computational Methods and Function Theory – Springer Journals
Published: Dec 1, 2023
Keywords: Paatero’s classes; Hornich spaces; Convex set; Extreme points; 30C45; 46B50
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.