Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Overview of control-centric integrated design for hypersonic vehicles

Overview of control-centric integrated design for hypersonic vehicles Abstract Hypersonic vehicles (HSVs) exhibit significant advantages over other vehicles, including the wide range of velocity and large airspace types, and these features have contributed to the rapid development of HSVs in the last 20 years. Moreover, hypersonic technologies have become a multidisciplinary research topic in the fields of aerodynamics, propulsion, structure, material, and control. Different types of re-entry gliding, air-breathing cruise, and aerospace vehicles have been designed to realize ambitious tasks, which in turn influenced the technological advancements and process change in the military. This paper summarizes the control-oriented integrated design of HSVs. First, the status of current research on the distinct characteristics and technique issues of HSVs is introduced. Then, the progresses made on complex modeling, guidance and control, and trajectory optimization are elaborated to exhibit the significant research interest in hypersonic technologies. The control-integrated design of HSVs is emphasized to solve the multidisciplinary design problems associated with the model and its control and trajectory. Various strategies regarding the multidisciplinary optimization design are also proposed to solve the integrated design problem. Finally, suggestions are provided for the control-oriented integrated design of HSVs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrodynamics Springer Journals

Overview of control-centric integrated design for hypersonic vehicles

Astrodynamics , Volume 2 (4): 18 – Dec 1, 2018

Loading next page...
 
/lp/springer-journals/overview-of-control-centric-integrated-design-for-hypersonic-vehicles-O6Q4mQEdsl
Publisher
Springer Journals
Copyright
2018 Tsinghua University Press
ISSN
2522-008X
eISSN
2522-0098
DOI
10.1007/s42064-018-0027-8
Publisher site
See Article on Publisher Site

Abstract

Abstract Hypersonic vehicles (HSVs) exhibit significant advantages over other vehicles, including the wide range of velocity and large airspace types, and these features have contributed to the rapid development of HSVs in the last 20 years. Moreover, hypersonic technologies have become a multidisciplinary research topic in the fields of aerodynamics, propulsion, structure, material, and control. Different types of re-entry gliding, air-breathing cruise, and aerospace vehicles have been designed to realize ambitious tasks, which in turn influenced the technological advancements and process change in the military. This paper summarizes the control-oriented integrated design of HSVs. First, the status of current research on the distinct characteristics and technique issues of HSVs is introduced. Then, the progresses made on complex modeling, guidance and control, and trajectory optimization are elaborated to exhibit the significant research interest in hypersonic technologies. The control-integrated design of HSVs is emphasized to solve the multidisciplinary design problems associated with the model and its control and trajectory. Various strategies regarding the multidisciplinary optimization design are also proposed to solve the integrated design problem. Finally, suggestions are provided for the control-oriented integrated design of HSVs.

Journal

AstrodynamicsSpringer Journals

Published: Dec 1, 2018

References