Access the full text.
Sign up today, get DeepDyve free for 14 days.
In this work we deal with a stability aspect of sizing optimization problems for a class of nonlinearly elastic materials, where the underlying state problem is nonlinear in both the displacements and the stresses. In [14] it is shown under which conditions there exists a unique solution of discrete design problems for a body made of the considered nonlinear material, if the nonlinear state problem is solved exactly. In numerical examples the nonlinear state problem has to be solved iteratively, and therefore it can be solved only up to some small error \eps .
Applied Mathematics and Optimization – Springer Journals
Published: Jan 1, 2001
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.