Access the full text.
Sign up today, get DeepDyve free for 14 days.
We present an open, parametric system for automatic detection of EEG artifacts in polysomnographic recordings. It relies on independent parameters reflecting the relative presence of each of the eight types of artifacts in a given epoch. An artifact is marked if any of these parameters exceeds a threshold. These thresholds, set for each parameter separately, can be adjusted via “learning by example” procedure (multidimensional minimization with computationally intensive cost function), which can be used to automatically tune the parameters to new types of datasets, environments or requirements. Performance of the system, evaluated on 103 overnight polysomnographic recordings, revealed concordance with decisions of human experts close to the inter-expert agreement. To make this statement well defined, we review the methodology of evaluation for this kind of detection systems. Complete source code is available from http://eeg.pl ; a user-friendly version with Java interface is available from http://signalml.org .
Neuroinformatics – Springer Journals
Published: Mar 24, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.