# On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations

On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations In this paper, we consider transcendental meromorphic solutions f of finite order ρ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\rho$$\end{document} and few poles in the sense that Sλ(r,f):=O(rλ+ε)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f):=O(r^{\lambda +\varepsilon })$$\end{document}, where λ<ρ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda <\rho$$\end{document} and ε∈(0,ρ-λ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon \in (0,\rho -\lambda )$$\end{document}, of the delay-differential equation fn+L(z,f)=p1(z)eα1(z)+p2(z)eα2(z),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} f^n+L(z,f)=p_1(z)e^{\alpha _{1}(z)}+p_2(z)e^{\alpha _{2}(z)}, \end{aligned}\end{document}where n≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\ge 2$$\end{document} is an integer, L(z, f) is a linear delay-differential polynomial with coefficients of growth Sλ(r,f)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f)$$\end{document}. In addition, p1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_1(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_2(z)$$\end{document} are non-zero small functions of f in the sense Sλ(r,f)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f)$$\end{document} and α1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _{1}(z)$$\end{document}, α2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _{2}(z)$$\end{document} are non-constant polynomials. In fact, we give the exact forms of all possible meromorphic solutions of the above equation and we improve some recent results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Methods and Function Theory Springer Journals

# On the Exact Forms of Meromorphic Solutions of Certain Non-linear Delay-Differential Equations

, Volume 22 (3) – Sep 1, 2022
32 pages

/lp/springer-journals/on-the-exact-forms-of-meromorphic-solutions-of-certain-non-linear-7oXrUnSAnC
Publisher
Springer Journals
Copyright © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
ISSN
1617-9447
eISSN
2195-3724
DOI
10.1007/s40315-021-00394-5
Publisher site
See Article on Publisher Site

### Abstract

In this paper, we consider transcendental meromorphic solutions f of finite order ρ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\rho$$\end{document} and few poles in the sense that Sλ(r,f):=O(rλ+ε)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f):=O(r^{\lambda +\varepsilon })$$\end{document}, where λ<ρ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda <\rho$$\end{document} and ε∈(0,ρ-λ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon \in (0,\rho -\lambda )$$\end{document}, of the delay-differential equation fn+L(z,f)=p1(z)eα1(z)+p2(z)eα2(z),\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{aligned} f^n+L(z,f)=p_1(z)e^{\alpha _{1}(z)}+p_2(z)e^{\alpha _{2}(z)}, \end{aligned}\end{document}where n≥2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\ge 2$$\end{document} is an integer, L(z, f) is a linear delay-differential polynomial with coefficients of growth Sλ(r,f)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f)$$\end{document}. In addition, p1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_1(z)$$\end{document}, p2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$p_2(z)$$\end{document} are non-zero small functions of f in the sense Sλ(r,f)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$S_{\lambda }(r,f)$$\end{document} and α1(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _{1}(z)$$\end{document}, α2(z)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\alpha _{2}(z)$$\end{document} are non-constant polynomials. In fact, we give the exact forms of all possible meromorphic solutions of the above equation and we improve some recent results.

### Journal

Computational Methods and Function TheorySpringer Journals

Published: Sep 1, 2022

Keywords: Meromorphic functions; Nevanlinna’s theory; Non-linear delay-differential equations; Form of solutions; Primary 39A45; Secondary 30D30

### References

Access the full text.