Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-property for complex space forms

On the Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}... Inspired by the work of Lu and Tian (Duke Math J 125:351--387, 2004), Loi et al. address in (Abh Math Semin Univ Hambg 90: 99-109, 2020) the problem of studying those Kähler manifolds satisfying the Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document}-property, i.e. such that on a neighborhood of each of its points the k-th power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k. In particular they conjectured that if a Kähler manifold satisfies the Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document}-property then it is a complex space form. This paper is dedicated to the proof of the validity of this conjecture. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Springer Journals

On the Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-property for complex space forms

Loading next page...
 
/lp/springer-journals/on-the-documentclass-12pt-minimal-usepackage-amsmath-usepackage-7CqZVZRJ6f
Publisher
Springer Journals
Copyright
Copyright © The Author(s), under exclusive licence to Mathematisches Seminar der Universität Hamburg 2021
ISSN
0025-5858
eISSN
1865-8784
DOI
10.1007/s12188-021-00233-3
Publisher site
See Article on Publisher Site

Abstract

Inspired by the work of Lu and Tian (Duke Math J 125:351--387, 2004), Loi et al. address in (Abh Math Semin Univ Hambg 90: 99-109, 2020) the problem of studying those Kähler manifolds satisfying the Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document}-property, i.e. such that on a neighborhood of each of its points the k-th power of the Kähler Laplacian is a polynomial function of the complex Euclidean Laplacian, for all positive integer k. In particular they conjectured that if a Kähler manifold satisfies the Δ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta $$\end{document}-property then it is a complex space form. This paper is dedicated to the proof of the validity of this conjecture.

Journal

Abhandlungen aus dem Mathematischen Seminar der Universität HamburgSpringer Journals

Published: Apr 1, 2021

Keywords: Kähler manifolds; Hermitian symmetric spaces; Kähler Laplacian; 32M15; 32Q15; 35J05

References