Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On Singularly Perturbed Linear Cocycles over Irrational Rotations

On Singularly Perturbed Linear Cocycles over Irrational Rotations We study a linear cocycle over the irrational rotation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sigma_{\omega}(x)=x+\omega$$\end{document} of the circle \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{1}$$\end{document}. It is supposed that the cocycle is generated by a \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{2}$$\end{document}-map\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\varepsilon}:\mathbb{T}^{1}\to SL(2,\mathbb{R})$$\end{document} which depends on a small parameter \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon\ll 1$$\end{document} and has the form of the Poincaré map corresponding to a singularly perturbed Hill equation with quasi-periodic potential. Under the assumption that the norm of the matrix \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\varepsilon}(x)$$\end{document} is of order \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\exp(\pm\lambda(x)/\varepsilon)$$\end{document}, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda(x)$$\end{document} is a positive function, we examine the property of the cocycle to possess an exponential dichotomy (ED) with respect to the parameter \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon$$\end{document}. We show that in the limit \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon\to 0$$\end{document} the cocycle “typically” exhibits ED only if it is exponentially close to a constant cocycle.Conversely, if the cocycle is not close to a constant one,it does not possess ED, whereas the Lyapunov exponent is “typically” large. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Regular and Chaotic Dynamics Springer Journals

On Singularly Perturbed Linear Cocycles over Irrational Rotations

Regular and Chaotic Dynamics , Volume 26 (3) – Jun 3, 2021

Loading next page...
 
/lp/springer-journals/on-singularly-perturbed-linear-cocycles-over-irrational-rotations-0KdNpn0pLA

References (27)

Publisher
Springer Journals
Copyright
Copyright © Pleiades Publishing, Ltd. 2021
ISSN
1560-3547
eISSN
1468-4845
DOI
10.1134/s1560354721030011
Publisher site
See Article on Publisher Site

Abstract

We study a linear cocycle over the irrational rotation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sigma_{\omega}(x)=x+\omega$$\end{document} of the circle \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb{T}^{1}$$\end{document}. It is supposed that the cocycle is generated by a \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^{2}$$\end{document}-map\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\varepsilon}:\mathbb{T}^{1}\to SL(2,\mathbb{R})$$\end{document} which depends on a small parameter \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon\ll 1$$\end{document} and has the form of the Poincaré map corresponding to a singularly perturbed Hill equation with quasi-periodic potential. Under the assumption that the norm of the matrix \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$A_{\varepsilon}(x)$$\end{document} is of order \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\exp(\pm\lambda(x)/\varepsilon)$$\end{document}, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\lambda(x)$$\end{document} is a positive function, we examine the property of the cocycle to possess an exponential dichotomy (ED) with respect to the parameter \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon$$\end{document}. We show that in the limit \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varepsilon\to 0$$\end{document} the cocycle “typically” exhibits ED only if it is exponentially close to a constant cocycle.Conversely, if the cocycle is not close to a constant one,it does not possess ED, whereas the Lyapunov exponent is “typically” large.

Journal

Regular and Chaotic DynamicsSpringer Journals

Published: Jun 3, 2021

There are no references for this article.