Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On integration by parts formula on open convex sets in Wiener spaces

On integration by parts formula on open convex sets in Wiener spaces In Euclidean space, it is well known that any integration by parts formula for a set of finite perimeter Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} is expressed by the integration with respect to a measure P(Ω,·)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P(\Omega ,\cdot )$$\end{document} which is equivalent to the one-codimensional Hausdorff measure restricted to the reduced boundary of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. The same result has been proved in an abstract Wiener space, typically an infinite-dimensional space, where the surface measure considered is the one-codimensional spherical Hausdorff–Gauss measure S∞-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {S}^{\infty -1}$$\end{document} restricted to the measure-theoretic boundary of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. In this paper, we consider an open convex set Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} and we provide an explicit formula for the density of P(Ω,·)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P(\Omega ,\cdot )$$\end{document} with respect to S∞-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {S}^{\infty -1}$$\end{document}. In particular, the density can be written in terms of the Minkowski functional p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathfrak {p}$$\end{document} of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} with respect to an inner point of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. As a consequence, we obtain an integration by parts formula for open convex sets in Wiener spaces. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Evolution Equations Springer Journals

On integration by parts formula on open convex sets in Wiener spaces

Loading next page...
 
/lp/springer-journals/on-integration-by-parts-formula-on-open-convex-sets-in-wiener-spaces-86hDbHyOVv

References (26)

Publisher
Springer Journals
Copyright
Copyright © Springer Nature Switzerland AG 2021
ISSN
1424-3199
eISSN
1424-3202
DOI
10.1007/s00028-020-00663-1
Publisher site
See Article on Publisher Site

Abstract

In Euclidean space, it is well known that any integration by parts formula for a set of finite perimeter Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} is expressed by the integration with respect to a measure P(Ω,·)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P(\Omega ,\cdot )$$\end{document} which is equivalent to the one-codimensional Hausdorff measure restricted to the reduced boundary of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. The same result has been proved in an abstract Wiener space, typically an infinite-dimensional space, where the surface measure considered is the one-codimensional spherical Hausdorff–Gauss measure S∞-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {S}^{\infty -1}$$\end{document} restricted to the measure-theoretic boundary of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. In this paper, we consider an open convex set Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} and we provide an explicit formula for the density of P(Ω,·)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$P(\Omega ,\cdot )$$\end{document} with respect to S∞-1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathscr {S}^{\infty -1}$$\end{document}. In particular, the density can be written in terms of the Minkowski functional p\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathfrak {p}$$\end{document} of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document} with respect to an inner point of Ω\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Omega $$\end{document}. As a consequence, we obtain an integration by parts formula for open convex sets in Wiener spaces.

Journal

Journal of Evolution EquationsSpringer Journals

Published: Jan 18, 2021

Keywords: Infinite-dimensional analysis; Abstract Wiener spaces; Integration by parts formula; Convex analysis; Geometric measure theory; Primary: 28C20; Secondary: 46G05; 46N10

There are no references for this article.