Access the full text.
Sign up today, get DeepDyve free for 14 days.
Frankl and Füredi in [1] conjectured that the r-graph with m edges formed by taking the first m sets in the colex ordering of N(r) has the largest Lagrangian of all r-graphs with m edges. Denote this r-graph by C r,m and the Lagrangian of a hypergraph by λ(G). In this paper, we first show that if $$\leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3 \end{array}} \right)$$ , G is a left-compressed 3-graph with m edges and on vertex set [t], the triple with minimum colex ordering in G c is (t − 2 − i)(t − 2)t, then λ(G) ≤ λ(C 3,m ). As an implication, the conjecture of Frankl and Füredi is true for $$ \left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right) - 6 \leqslant m \leqslant \left( {\begin{array}{*{20}{c}}t \\ 3\end{array}} \right)$$ .
Acta Mathematicae Applicatae Sinica – Springer Journals
Published: Apr 5, 2016
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.