Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities and inequalities for certain operator matrices

On A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}... The main goal of this article is to establish several new A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities for n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} circulant, skew circulant, imaginary circulant, imaginary skew circulant, tridiagonal, and anti-tridiagonal operator matrices, where A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document} is the n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} diagonal operator matrix whose diagonal entries are positive bounded operator A. Some special cases of our results lead to the results of earlier works in the literature, which shows that our results are more general. Further, some pinching type A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document}-numerical radius inequalities for n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} block operator matrices are given. Some equality conditions are also given. We also provide a concluding section, which may lead to several new problems in this area. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annals of Functional Analysis Springer Journals

On A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities and inequalities for certain operator matrices

Loading next page...
 
/lp/springer-journals/on-a-documentclass-12pt-minimal-usepackage-amsmath-usepackage-wasysym-doNtIPbeJx
Publisher
Springer Journals
Copyright
Copyright © Tusi Mathematical Research Group (TMRG) 2021
ISSN
2639-7390
eISSN
2008-8752
DOI
10.1007/s43034-021-00137-6
Publisher site
See Article on Publisher Site

Abstract

The main goal of this article is to establish several new A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document}-numerical radius equalities for n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} circulant, skew circulant, imaginary circulant, imaginary skew circulant, tridiagonal, and anti-tridiagonal operator matrices, where A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document} is the n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} diagonal operator matrix whose diagonal entries are positive bounded operator A. Some special cases of our results lead to the results of earlier works in the literature, which shows that our results are more general. Further, some pinching type A\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {A}}$$\end{document}-numerical radius inequalities for n×n\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$n\times n$$\end{document} block operator matrices are given. Some equality conditions are also given. We also provide a concluding section, which may lead to several new problems in this area.

Journal

Annals of Functional AnalysisSpringer Journals

Published: Jul 21, 2021

Keywords: A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-numerical radius; Positive operator; Semi-inner product; Inequality; Circulant operator matrix; Tridiagonal operator matrix

References