Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Numerical study of biomechanical characteristics of plaque rupture at stenosed carotid bifurcation: a stenosis mechanical property-specific guide for blood pressure control in daily activities

Numerical study of biomechanical characteristics of plaque rupture at stenosed carotid... Acute stress concentration plays an important role in plaque rupture and may cause stroke or myocardial infarction. Quantitative evaluation of the relation between in vivo plaque stress and variations in blood pressure and flow rates is valuable to optimize daily monitoring of the cardiovascular system for high-risk patients as well as to set a safe physical exercise intensity for better quality of life. In this study, we constructed an in vivo stress model for a human carotid bifurcation with atherosclerotic plaque, and analyzed the effects of blood pressure, flow rates, plaque stiffness, and stenosis on the elastic stress and fluid viscous stress around the plaque. According to the maximum values of the mechanical stress, we define a risk index to predict the risk level of plaque rupture under different exercise intensities. For a carotid bifurcation where the blood flow divides, the results suggest that the stenosis ratio determines the ratio of the contributions of elastic shear stress and viscous shear stress to plaque rupture. An increase of the plaque stiffness enhances the maximum elastic shear stress in the plaque, indicating that a high-stiffness plaque is more prone to rupture for given stenosis ratio. High stress co-localization at the shoulder of plaques agrees with the region of plaque injury in clinical observations. It is demonstrated that, due to the stress-shield effect, the rupture risk of a high-stiffness plaque tends to decrease under high-stenosis conditions, suggesting the existence of a specific stenosis corresponding to the maximum risk. This study may help to complement risk stratification of vulnerable plaques in clinical practice and provides a stenosis mechanical property-specific guide for blood pressure control in cardiovascular health management. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Acta Mechanica Sinica Springer Journals

Numerical study of biomechanical characteristics of plaque rupture at stenosed carotid bifurcation: a stenosis mechanical property-specific guide for blood pressure control in daily activities

Loading next page...
 
/lp/springer-journals/numerical-study-of-biomechanical-characteristics-of-plaque-rupture-at-0Qv4AYbH7M

References (32)

Publisher
Springer Journals
Copyright
Copyright © 2019 by The Chinese Society of Theoretical and Applied Mechanics and Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Classical and Continuum Physics; Engineering Fluid Dynamics; Computational Intelligence
ISSN
0567-7718
eISSN
1614-3116
DOI
10.1007/s10409-019-00883-w
Publisher site
See Article on Publisher Site

Abstract

Acute stress concentration plays an important role in plaque rupture and may cause stroke or myocardial infarction. Quantitative evaluation of the relation between in vivo plaque stress and variations in blood pressure and flow rates is valuable to optimize daily monitoring of the cardiovascular system for high-risk patients as well as to set a safe physical exercise intensity for better quality of life. In this study, we constructed an in vivo stress model for a human carotid bifurcation with atherosclerotic plaque, and analyzed the effects of blood pressure, flow rates, plaque stiffness, and stenosis on the elastic stress and fluid viscous stress around the plaque. According to the maximum values of the mechanical stress, we define a risk index to predict the risk level of plaque rupture under different exercise intensities. For a carotid bifurcation where the blood flow divides, the results suggest that the stenosis ratio determines the ratio of the contributions of elastic shear stress and viscous shear stress to plaque rupture. An increase of the plaque stiffness enhances the maximum elastic shear stress in the plaque, indicating that a high-stiffness plaque is more prone to rupture for given stenosis ratio. High stress co-localization at the shoulder of plaques agrees with the region of plaque injury in clinical observations. It is demonstrated that, due to the stress-shield effect, the rupture risk of a high-stiffness plaque tends to decrease under high-stenosis conditions, suggesting the existence of a specific stenosis corresponding to the maximum risk. This study may help to complement risk stratification of vulnerable plaques in clinical practice and provides a stenosis mechanical property-specific guide for blood pressure control in cardiovascular health management.

Journal

Acta Mechanica SinicaSpringer Journals

Published: Jun 27, 2019

There are no references for this article.