Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Numerical experiments on the impacts of surface evaporation and fractionation factors on stable isotopes in precipitation

Numerical experiments on the impacts of surface evaporation and fractionation factors on stable... Abstract The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Asia-Pacific Journal of Atmospheric Sciences" Springer Journals

Numerical experiments on the impacts of surface evaporation and fractionation factors on stable isotopes in precipitation

Loading next page...
 
/lp/springer-journals/numerical-experiments-on-the-impacts-of-surface-evaporation-and-4p5lxphYRM
Publisher
Springer Journals
Copyright
2016 Korean Meteorological Society and Springer Science+Business Media Dordrecht
ISSN
1976-7633
eISSN
1976-7951
DOI
10.1007/s13143-016-0008-x
Publisher site
See Article on Publisher Site

Abstract

Abstract The isotope enabled atmospheric water balance model is applied to examine the spatial and temporal variations of δ18O in precipitation, amount effect and meteoric water lines (MWL) under four scenarios with different fractionation nature and surface evaporation inputs. The experiments are conducted under the same weather forcing in the framework of the water balance and stable water isotope balance. Globally, the spatial patterns of mean δ18O and global MWLs simulated by four simulation tests are in reasonably good agreement with the Global Network of Isotopes in Precipitation observations. The results indicate that the assumptions of equilibrium fractionation for simulating spatial distribution in mean annual δ18O and the global MWL, and kinetic fractionation in simulating δ18O seasonality are acceptable. In Changsha, four simulation tests all reproduce the observed seasonal variations of δ18O in precipitation. Compared with equilibrium fractionation, the depleted degree of stable isotopes in precipitation is enhanced under kinetic fractionation, in company with a decrease of isotopic seasonality and inter-event variability. The alteration of stable isotopes in precipitation caused by the seasonal variation of stable isotopes in vapour evaporated from the surface is opposite between cold and warm seasons. Four simulations all produce the amount effect commonly observed in monsoon areas. Under kinetic fractionation, the slope of simulated amount effect is closer to the observed one than other scenarios. The MWL for warm and humid climate in monsoon areas are well simulated too. The slopes and intercepts of the simulated MWLs decrease under kinetic fractionation.

Journal

"Asia-Pacific Journal of Atmospheric Sciences"Springer Journals

Published: Jun 1, 2016

References