Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Numerical comparison of steering geometries for robotic vehicles by modeling positioning error

Numerical comparison of steering geometries for robotic vehicles by modeling positioning error This paper describes an analytical method for modeling the positioning error of a robotic vehicle and examines how the metric of this error can be used to compare the geometries of various steering configuration. Positioning error can be caused by many factors stemming from the robot’s hardware and software configurations and the interaction between the robot and its environment. A slip motion model that captures the effects of key factors that contribute to positioning error is presented. Robot kinematic models with and without slippage are reformulated and used to perform an in-depth assessment and characterization of positioning error. The method is applied to three characteristic advance and steering configurations: Ackermann, articulated, and explicitly steered. This analysis serves as a quantitative evaluation of the properties of the steering geometries for path tracking under identical slippage conditions. The method can also be used as a tool for comparing robot configurations to make trade-off decisions early in the design process, as it allows for derivation of predicted performance values of alternative steering geometries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Numerical comparison of steering geometries for robotic vehicles by modeling positioning error

Loading next page...
 
/lp/springer-journals/numerical-comparison-of-steering-geometries-for-robotic-vehicles-by-Sd2fmgdm5m

References (47)

Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
DOI
10.1007/s10514-007-9037-8
Publisher site
See Article on Publisher Site

Abstract

This paper describes an analytical method for modeling the positioning error of a robotic vehicle and examines how the metric of this error can be used to compare the geometries of various steering configuration. Positioning error can be caused by many factors stemming from the robot’s hardware and software configurations and the interaction between the robot and its environment. A slip motion model that captures the effects of key factors that contribute to positioning error is presented. Robot kinematic models with and without slippage are reformulated and used to perform an in-depth assessment and characterization of positioning error. The method is applied to three characteristic advance and steering configurations: Ackermann, articulated, and explicitly steered. This analysis serves as a quantitative evaluation of the properties of the steering geometries for path tracking under identical slippage conditions. The method can also be used as a tool for comparing robot configurations to make trade-off decisions early in the design process, as it allows for derivation of predicted performance values of alternative steering geometries.

Journal

Autonomous RobotsSpringer Journals

Published: May 23, 2007

There are no references for this article.