Access the full text.
Sign up today, get DeepDyve free for 14 days.
The purpose of this paper is to outline various results regarding the computational complexity and the algorithms of nonmonotonic entailment in different coherence‐based approaches. Starting from a (non necessarily consistent) belief base E and a pre‐order on E, we first present different mechanisms for selecting preferred consistent subsets. Then we present different entailment principles in order to manage these multiple subsets. The crossing point of each generation mechanism m and each entailment principle p defines an entailment relation $$ (E, \leqslant )\left| \sim \right.^{p,m} \Phi $$ which we study from the computational complexity point of view. The results are not very encouraging since the complexity of all these nonmonotonic entailment relations is, in most restricted languages, larger than the complexity of monotonic entailment. So, we decided to extend Binary Decision Diagrams technics, which are well suited to the task of solving NP‐hard logic‐based problems. Both theoretical and experimental results are described along this line in the last sections.
Annals of Mathematics and Artificial Intelligence – Springer Journals
Published: Oct 4, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.